## ----setup, include=FALSE-----------------------------------------------------
knitr::opts_chunk$set(echo = TRUE)
## ---- message = FALSE, warning=FALSE------------------------------------------
library("scRNAseq")
library("AbNames")
kotliarov <- KotliarovPBMCData(mode = "adt")
head(rownames(kotliarov))
## -----------------------------------------------------------------------------
# Create a data.frame for matching to the CITEseq data set
# Column "Antigen" will be used for matching
df <- data.frame(Original = rownames(kotliarov),
# Remove _PROT (optionally with a space before)
Antigen = gsub(" ?_PROT", "", rownames(kotliarov)))
head(df)
## -----------------------------------------------------------------------------
df <- matchToCiteseq(df)
print(head(df))
## -----------------------------------------------------------------------------
df[! df$Antigen == df$Antigen_std, ]
## -----------------------------------------------------------------------------
head(df[order(df$n_matched),], 10)
## -----------------------------------------------------------------------------
# To rename the singleCellExperiment, we need a named vector of the new names,
# with names being the original names of the singleCellExperiment.
# "structure" is a method that allows us to create a named vector in one step
new_nms <- structure(df[[2]], names = rownames(kotliarov))
print(head(new_nms))
kotliarov <- renameADT(kotliarov, new_nms)
head(rownames(kotliarov))
## ---- echo = FALSE------------------------------------------------------------
# Load CiteFuse example data
library(CiteFuse)
data("CITEseq_example", package = "CiteFuse")
sce_citeseq <- preprocessing(CITEseq_example)
rownames(altExp(sce_citeseq, "ADT"))
# DO WE NEED TO DO ANY PREPROCESSING OF THE NAMES? JUST PASS IN CITESEQ?
df <- data.frame(Antigen = rownames(altExp(sce_citeseq, "ADT")))
df <- matchToCiteseq(df)
# Print entries that differ from the original
df[! df$Antigen == df$Antigen_std, ]
# Print the entries with the fewest matches
head(df[order(df$n_matched),], 10)
## ---- message = FALSE---------------------------------------------------------
# We load dplyr to simplify data.frame manipulations.
library(dplyr)
# Load citeseq data set
data(citeseq)
tcrb <- citeseq %>%
# We will first select entries that equal "TCRb"
dplyr::filter(Antigen == "TCRb") %>%
# Then subset to just the columns we want to use for matching
dplyr::select(Antigen, Clone, Cat_Number, ALT_ID)
# Then we will find entries in citeseq that match any of these columns.
# filter_by_union is a function to return rows where any the value of any
# column occurs in a reference data.frame
citeseq %>%
filter_by_union(tcrb) %>%
# Select just columns of interest for viewing
dplyr::select(Study, Antigen, Clone, Cat_Number, ALT_ID)
## -----------------------------------------------------------------------------
sessionInfo()
## ---- echo = FALSE------------------------------------------------------------
# alternative data sets
#library(SingleCellMultiModal)
#cord_blood <- CITEseq(DataType="cord_blood", modes="scADT_Counts",
# dry.run=FALSE, DataClass = "SingleCellExperiment")
#cord_blood
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.