#' Computes differential abundance analysis using a zero-inflated log-normal model
#'
#' Wrapper to actually run zero-inflated log-normal model given a MRexperiment object
#' and model matrix. User can decide to shrink parameter estimates.
#'
#' @param obj A MRexperiment object with count data.
#' @param mod The model for the count distribution.
#' @param coef Coefficient of interest to grab log fold-changes.
#' @param B Number of bootstraps to perform if >1. If >1 performs permutation test.
#' @param szero TRUE/FALSE, shrink zero component parameters.
#' @param spos TRUE/FALSE, shrink positive component parameters.
#' @return A list of objects including:
#' \itemize{
#' \item{call - the call made to fitFeatureModel}
#' \item{fitZeroLogNormal - list of parameter estimates for the zero-inflated log normal model}
#' \item{design - model matrix}
#' \item{taxa - taxa names}
#' \item{counts - count matrix}
#' \item{pvalues - calculated p-values}
#' \item{permuttedfits - permutted z-score estimates under the null}
#' }
#' @seealso \code{\link{cumNorm}}
#' @examples
#'
#' data(lungData)
#' lungData = lungData[,-which(is.na(pData(lungData)$SmokingStatus))]
#' lungData=filterData(lungData,present=30,depth=1)
#' lungData <- cumNorm(lungData, p=.5)
#' s <- normFactors(lungData)
#' pd <- pData(lungData)
#' mod <- model.matrix(~1+SmokingStatus, data=pd)
#' lungres1 = fitFeatureModel(lungData,mod)
#'
fitFeatureModel<-function(obj,mod,coef=2,B=1,szero=FALSE,spos=TRUE){
stopifnot(is(obj, "MRexperiment"))
if (any(is.na(normFactors(obj))))
stop("At least one NA normalization factors")
if (any(is.na(libSize(obj))))
stop("Calculate the library size first!")
if (any(is.na(normFactors(obj)))) {
stop("Calculate the normalization factors first!")
}
nf = normFactors(obj)
mmCount = cbind(mod, log(nf/median(nf)))
colnames(mmCount)[ncol(mmCount)] = "scalingFactor"
if(ncol(mmCount)>3){ stop("Can't analyze currently.") }
i = permuttedFits = NULL
# These pieces get to be a part of the new zero-ln model!
fitzeroln = fitZeroLogNormal(obj,mmCount,coef=coef,szero=szero,spos=spos)
if(any(is.na(fitzeroln$logFC))){
feats = which(is.na(fitzeroln$logFC))
mat = MRcounts(obj[feats,], norm=TRUE, log=FALSE,sl=median(nf))
fit = lmFit(log(mat+1),mmCount)
fit = eBayes(fit)
fitzeroln$logFC[feats] = coefficients(fit)[,coef]
fitzeroln$se[feats] = (sqrt(fit$s2.post)*fit$stdev.unscaled)[,coef]
}
zscore = fitzeroln$logFC/fitzeroln$se
if(B>1){
permutations = replicate(B,sample(mmCount[,coef]))
mmCountPerm = mmCount
permuttedFits = foreach(i = seq(B),.errorhandling="remove",
.packages=c("metagenomeSeq","glmnet")) %dopar% {
mmCountPerm[,coef] = permutations[,i]
permFit = fitZeroLogNormal(obj,mmCountPerm,coef=coef,szero=szero,spos=spos)
permFit$logFC/permFit$se
}
zperm = abs(sapply(permuttedFits,function(i)i))
pvals = rowMeans(zperm>=abs(zscore),na.rm=TRUE)
} else {
pvals = 2*(1-pnorm(abs(zscore)))
}
# old way of creating results object
# res = list(call=match.call(),fitZeroLogNormal=fitzeroln,design=mmCount,
# taxa=rownames(obj),counts=MRcounts(obj),pvalues=pvals,permuttedFits=permuttedFits)
# new way with defined results class
res = new("fitFeatureModelResults", call = match.call(), fitZeroLogNormal=fitzeroln,
design = mmCount, taxa = rownames(obj), counts = MRcounts(obj),
pvalues = pvals, permuttedFits = permuttedFits)
res
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.