R/bambu-processReads_utilityConstructReadClasses.R

Defines functions getRefGeneExonList assignGeneIdsNonAssigned assignGeneIdsNoReference assignGeneIdsByReference assignGeneIds initiateHitsDF getUnsplicedReadClassByReference constructUnsplicedReadClasses createExonsByReadClass getChrFromGrList createReadTable correctReadStrandById correctIntronRanges constructSplicedReadClasses isore.constructReadClasses

#' Isoform reconstruction using genomic alignments
#' @param readGrgList readGrgList
#' @param unlisted_junctions unlisted_junctions
#' @param uniqueJunctions uniqueJunctions
#' @param runName runName
#' @param annotations annotations
#' @param stranded stranded
#' @param verbose verbose
#' @inheritParams bambu
#' @noRd
isore.constructReadClasses <- function(readGrgList, unlisted_junctions,
                                       uniqueJunctions, runName = "sample1",
                                       annotations, stranded = FALSE, verbose = FALSE) {
    #split reads into single exon and multi exon reads
    reads.singleExon <- unlist(readGrgList[elementNROWS(readGrgList) == 1],
                               use.names = FALSE)
    mcols(reads.singleExon)$id <- mcols(readGrgList[
        elementNROWS(readGrgList) == 1])$id
    #only keep multi exons reads in readGrgList   
    readGrgList <- readGrgList[elementNROWS(readGrgList) > 1]
    if (!identical(mcols(readGrgList)$id,unique(mcols(unlisted_junctions)$id))) 
        warning("read Id not sorted, can result in wrong assignments.
            Please report this")
    start.ptm <- proc.time()
    if(!is.null(uniqueJunctions)){
        exonsByRC.spliced <- constructSplicedReadClasses(
            uniqueJunctions = uniqueJunctions,
            unlisted_junctions = unlisted_junctions,
            readGrgList = readGrgList,
            stranded = stranded)}
    else{exonsByRC.spliced = GRangesList()}
    end.ptm <- proc.time()
    rm(readGrgList, unlisted_junctions, uniqueJunctions)
    if (verbose) 
        message("Finished creating transcript models (read classes) for reads with ",
    "spliced junctions in ", round((end.ptm - start.ptm)[3] / 60, 1)," mins.")
    if(length(reads.singleExon)==0) { 
        exonsByRC.unspliced <- NULL
    } else {exonsByRC.unspliced <- constructUnsplicedReadClasses(reads.singleExon, 
        annotations, exonsByRC.spliced, stranded, verbose)}
    exonsByRC <- c(exonsByRC.spliced, exonsByRC.unspliced)
    colDataDf <- DataFrame(name = runName, row.names = runName)
    #TODO later remove assays = SimpleList(counts = counts)
    counts <- matrix(mcols(exonsByRC)$readCount,
                     dimnames = list(names(exonsByRC), runName))
    se <- SummarizedExperiment(assays = SimpleList(counts = counts),
        rowRanges = exonsByRC, colData = colDataDf)
    return(se)
}


#' reconstruct spliced transripts
#' @importFrom S4Vectors unstrsplit 
#' @importFrom dplyr select %>%
#' @importFrom GenomicRanges match
#' @noRd
constructSplicedReadClasses <- function(uniqueJunctions, unlisted_junctions, 
                                        readGrgList, stranded = FALSE) {
    options(scipen = 999)
    allToUniqueJunctionMatch <- GenomicRanges::match(unlisted_junctions,
                                                     uniqueJunctions, ignore.strand = TRUE)
    correctedJunctionMatches <- 
        base::match(uniqueJunctions$mergedHighConfJunctionIdAll_noNA[
            allToUniqueJunctionMatch], names(uniqueJunctions))
    unlisted_junctions <- correctIntronRanges(unlisted_junctions, 
        uniqueJunctions, correctedJunctionMatches)
    rm(correctedJunctionMatches)
    if(any(mcols(unlisted_junctions)$remove)){  # remove microexons
        toRemove = which(mcols(unlisted_junctions)$remove)
        unlisted_junctions = unlisted_junctions[-toRemove]
        allToUniqueJunctionMatch = allToUniqueJunctionMatch[-toRemove]
    }

    if (isFALSE(stranded)) {
        readStrand <- correctReadStrandById(
            as.factor(strand(unlisted_junctions)),
            id = mcols(unlisted_junctions)$id)
    } else {
        readStrand <- as.factor(getStrandFromGrList(readGrgList))
    }
    # confidence type (note: can be changed to integer encoding)
    readConfidence <- factor(rep("highConfidenceJunctionReads",
        length(readStrand)), levels = c('highConfidenceJunctionReads',
        'lowConfidenceJunctionReads'))
    lowConfidenceReads <- which(sum(is.na(splitAsList(
        uniqueJunctions$mergedHighConfJunctionId[allToUniqueJunctionMatch],
        mcols(unlisted_junctions)$id))) > 0)
    readConfidence[lowConfidenceReads] <- "lowConfidenceJunctionReads"
    rm(lowConfidenceReads, uniqueJunctions, allToUniqueJunctionMatch)
    readTable <- createReadTable(start(unlisted_junctions), 
        end(unlisted_junctions), mcols(unlisted_junctions)$id, readGrgList,
        readStrand, readConfidence)
    exonsByReadClass <- createExonsByReadClass(readTable)
    readTable <- readTable %>% dplyr::select(chr.rc = chr, strand.rc = strand,
        startSD = startSD, endSD = endSD, 
        readCount.posStrand = readCount.posStrand, intronStarts, intronEnds, 
        confidenceType, readCount, readIds)
    mcols(exonsByReadClass) <- readTable
    options(scipen = 0)
    return(exonsByReadClass)
}

#' this functions uses the uniqueJunction table which has reference junctions
#' and replaces intron coordinates with coordinates from the reference junction
#' the strand of junctions is also changed to the reference junction strand
#' @noRd
correctIntronRanges <- function(unlisted_junctions, uniqueJunctions,
                                correctedJunctionMatches){
    intronStartTMP <-
        start(uniqueJunctions)[correctedJunctionMatches]
    
    intronEndTMP <-
        end(uniqueJunctions)[correctedJunctionMatches]
    
    exon_0size <- 
        which(intronStartTMP[-1] <= intronEndTMP[-length(intronEndTMP)] &
                  mcols(unlisted_junctions)$id[-1] == 
                  mcols(unlisted_junctions)$id[-length(unlisted_junctions)])
    
    start(unlisted_junctions) <- intronStartTMP
    end(unlisted_junctions) <- intronEndTMP
    strand(unlisted_junctions) <-
        uniqueJunctions$strand.mergedHighConfJunction[correctedJunctionMatches]
    
    #remove micro exons and adjust respective junctions
    start(unlisted_junctions)[exon_0size+1]=
        start(unlisted_junctions)[exon_0size]
    mcols(unlisted_junctions)$remove <- rep(FALSE, length(unlisted_junctions))
    mcols(unlisted_junctions)$remove[exon_0size] <- TRUE
    
    return(unlisted_junctions)
}

#' This function returns the inferred strand based on the number of +(plus) and
#' -(minus) junctions in each read (majority vote)
#' @noRd
correctReadStrandById <- function(strand, id, stranded = FALSE){
    plusCount <- as.integer(sum(splitAsList(strand, id) == "+"))
    minusCount <- as.integer(sum(splitAsList(strand, id) == "-"))
    strandJunctionSum <- minusCount - plusCount
    readStrand <- 
        factor(rep("*", length(strandJunctionSum)), levels = c('+','-','*'))
    readStrand[strandJunctionSum < 0] <- "+"
    readStrand[strandJunctionSum > 0] <- "-"
    return(readStrand)
}


#' This function generates a table that contains 1 row for each (spliced) read
#' This table is then summarised into read classes (identical junction patterns)
#' The readClass table is returned
#' @param unlisted_junctions unlisted_junctions
#' @param readGrgList reads GRangesList
#' @param readStrand readStrand
#' @param readConfidence readConfidence
#' @importFrom dplyr tibble %>% group_by n summarise nth order_by arrange mutate
#'     row_number .groups
#' @noRd
createReadTable <- function(unlisted_junctions_start, unlisted_junctions_end, 
    unlisted_junctions_id, readGrgList,readStrand, readConfidence) {
    readRanges <- unlist(range(ranges(readGrgList)), use.names = FALSE)
    intronStartCoordinatesInt <- 
        as.integer(min(splitAsList(unlisted_junctions_start,
        unlisted_junctions_id)) - 2)
    intronEndCoordinatesInt <- 
        as.integer(max(splitAsList(unlisted_junctions_end,
        unlisted_junctions_id)) + 2)
    readTable <- tibble(chr = as.factor(getChrFromGrList(readGrgList)), 
        intronStarts = 
        unname(unstrsplit(splitAsList(as.character(unlisted_junctions_start),
            unlisted_junctions_id), sep = ",")),
        intronEnds = 
            unname(unstrsplit(splitAsList(as.character(unlisted_junctions_end),
                unlisted_junctions_id), sep = ",")),
        start = pmin(start(readRanges), intronStartCoordinatesInt),
        end = pmax(end(readRanges), intronEndCoordinatesInt),
        strand = readStrand, confidenceType = readConfidence,
        alignmentStrand = as.character(getStrandFromGrList(readGrgList))=='+',
        readId = mcols(readGrgList)$id)
    rm(readRanges, readStrand, unlisted_junctions_start, 
        unlisted_junctions_end, unlisted_junctions_id, readConfidence, 
        intronStartCoordinatesInt, intronEndCoordinatesInt)
    ## currently 80%/20% quantile of reads is used to identify start/end sites
    readTable <- readTable %>% 
        group_by(chr, strand, intronEnds, intronStarts, confidenceType) %>% 
        summarise(readCount = n(), startSD = sd(start), endSD = sd(end),
                start = nth(x = start, n = ceiling(readCount / 5), order_by = start),
                end = nth(x = end, n = ceiling(readCount / 1.25), order_by = end), 
                readCount.posStrand = sum(alignmentStrand, na.rm = TRUE), readIds = list(readId),
                .groups = 'drop') %>% 
        arrange(chr, start, end) %>%
        mutate(readClassId = paste("rc", row_number(), sep = "."))
    return(readTable)
}

#' @noRd
getChrFromGrList <- function(grl) { 
    return(unlist(seqnames(grl), use.names = FALSE)[cumsum(elementNROWS(grl))]) 
}

#' Create Exons By Read Class
#' @importFrom GenomicRanges makeGRangesListFromFeatureFragments narrow 
#' @noRd
createExonsByReadClass <- function(readTable){
    exonsByReadClass <- makeGRangesListFromFeatureFragments(
        seqnames = readTable$chr,
        fragmentStarts = 
            paste(readTable$start - 1, readTable$intronEnds, sep = ","),
        fragmentEnds = 
            paste(readTable$intronStarts, readTable$end + 1, sep = ","),
        strand = readTable$strand)
    # correct junction to exon differences in coordinates
    exonsByReadClass <- narrow(exonsByReadClass, start = 2, end = -2)
    names(exonsByReadClass) <- readTable$readClassId
    
    # add exon rank and exon_endRank
    unlistData <- unlist(exonsByReadClass, use.names = FALSE)
    partitioning <- PartitioningByEnd(cumsum(elementNROWS(exonsByReadClass)),
                                      names = NULL)
    exon_rank <- lapply(width(partitioning), seq, from = 1)
    exon_rank[which(readTable$strand == "-")] <-
        lapply(exon_rank[which(readTable$strand == "-")], rev)
    # * assumes positive for exon ranking
    exon_endRank <- lapply(exon_rank, rev)
    unlistData$exon_rank <- unlist(exon_rank)
    unlistData$exon_endRank <- unlist(exon_endRank)
    exonsByReadClass <- relist(unlistData, partitioning)
    return(exonsByReadClass)
}

#' generate exonByReadClass
#' @importFrom GenomicRanges granges unlist reduce 
#' @noRd
constructUnsplicedReadClasses <- function(reads.singleExon, annotations, 
        readClassListSpliced, stranded, verbose = FALSE){
    start.ptm <- proc.time()
    referenceExons <- unique(c(granges(unlist(
        readClassListSpliced[mcols(readClassListSpliced)$confidenceType ==
                                 "highConfidenceJunctionReads" &
                                 mcols(readClassListSpliced)$strand.rc != "*"], 
        use.names = FALSE)),
        granges(unlist(annotations, use.names = FALSE))))
    #(1) reads fall into annotations or spliced read classes are summarised
    # by their minimum read class coordinates
    #remove duplicate ranges
    counts = as.data.frame(reads.singleExon) %>% 
        mutate(id = mcols(reads.singleExon)$id) %>% 
        group_by(seqnames,start,end,strand) %>% 
        mutate(n=n(), id = list(id)) %>%  # change summarise to mutate as summarise will reorder the table
        ungroup() %>%
        as.data.frame()
    mcols(reads.singleExon)$counts <- counts$n
    mcols(reads.singleExon)$id <- counts$id
     reads.singleExon = unique(reads.singleExon)

    rcUnsplicedAnnotation <- getUnsplicedReadClassByReference(
        granges = reads.singleExon, grangesReference = referenceExons,
        confidenceType = "unsplicedWithin", stranded = stranded)
    if(length(rcUnsplicedAnnotation)>0){
        #remove summed reads that fell in an annotation
        partitioning = PartitioningByEnd(mcols(reads.singleExon)$id)
        nonRefRead = !(unlist(mcols(reads.singleExon)$id) %in% unlist(mcols(rcUnsplicedAnnotation)$readIds))
        reads.singleExon <- reads.singleExon[all(relist(nonRefRead, partitioning))]
    }
    if(length(reads.singleExon)==0){
      exonsByReadClass <- rcUnsplicedAnnotation
    }else{
      referenceExons <- reduce(reads.singleExon, ignore.strand = !stranded)
      #(2) reads do not fall within a annotated exon/high confidence read class 
      # exon are summarised based on the union of overlapping unspliced reads
      rcUnsplicedReduced <- getUnsplicedReadClassByReference(
        granges = reads.singleExon, grangesReference = referenceExons,
        confidenceType = "unsplicedNew", stranded = stranded)
      exonsByReadClass <- c(rcUnsplicedAnnotation, 
                            rcUnsplicedReduced)
    }
    end.ptm <- proc.time()
    if (verbose) message("Finished create single exon transcript models ",
        "(read classes) in ", round((end.ptm - start.ptm)[3] / 60, 1), " mins.")
    return(exonsByReadClass)
}



#' reconstruct read classes using unspliced reads that fall
#' within exons from annotations
#' @importFrom GenomicRanges GRanges relist
#' @importFrom dplyr %>% select group_by summarise .groups mutate cut_group_id
#'     ungroup distinct 
#' @noRd
getUnsplicedReadClassByReference <- function(granges, grangesReference,
    confidenceType = "unspliced", stranded = TRUE) {
    if (is.null(mcols(granges)$id))
        stop("ID column is missing from mcols(granges)")
    hitsWithin <- findOverlaps(granges, grangesReference,
        ignore.strand = !stranded, 
        type = "within", 
        select = "all")
    hitsDF <- initiateHitsDF(hitsWithin, grangesReference, stranded)
    ## create single exon read class by using the minimum end
    ## and maximum start of all overlapping exons (identical to
    ## minimum equivalent class)
    hitsDF <- hitsDF %>% dplyr::select(queryHits, chr, start, end, strand) %>%
      group_by(queryHits, chr, strand) %>%
      summarise(start = max(start), end = min(end), .groups = "drop") %>%
      group_by(chr, start, end, strand) %>%
      mutate(readClassId = paste0("rc", confidenceType, ".", 
                                  cur_group_id())) %>% ungroup() %>%
      mutate(alignmentStrand = as.character(strand(granges))[queryHits]=="+",
             readStart = start(granges)[queryHits],
             readEnd = end(granges)[queryHits],
             counts = mcols(granges)$counts[queryHits],
             readId = mcols(granges[queryHits])$id)
    hitsDF <- hitsDF %>% 
        dplyr::select(chr, start, end, readStart, readEnd, 
            strand, readClassId, alignmentStrand, 
            counts, readId) %>%
        group_by(readClassId) %>% 
        summarise(start = start[1], end = end[1], 
            strand = strand[1], chr = chr[1], readCount = sum(counts),
            startSD = sd(rep(readStart,counts)), endSD = sd(rep(readEnd,counts)), 
            readCount.posStrand = sum(rep(alignmentStrand,counts)),
            readIds = list(unlist(readId))) %>% 
        mutate(confidenceType = confidenceType, intronStarts = NA,
            intronEnds = NA)
    if(nrow(hitsDF)==0){
        return(GRangesList())
    }
    exByReadClassUnspliced <- GenomicRanges::GRanges(
        seqnames = hitsDF$chr,
        ranges = IRanges(start = hitsDF$start, end = hitsDF$end),
        strand = hitsDF$strand)
    exByReadClassUnspliced$exon_rank <- 1
    exByReadClassUnspliced$exon_endRank <- 1
    partitioning <- PartitioningByEnd(seq_along(exByReadClassUnspliced))
    exByReadClassUnspliced <- relist(exByReadClassUnspliced, partitioning)
    rm(partitioning)
    names(exByReadClassUnspliced) <- hitsDF$readClassId
    hitsDF <- dplyr::select(hitsDF, chr.rc = chr, strand.rc = strand,
        intronStarts, intronEnds,
        confidenceType, readCount, startSD, endSD, 
        readCount.posStrand, readIds)
    mcols(exByReadClassUnspliced) <- hitsDF
    return(exByReadClassUnspliced)
}

#' initiate the hits dataframe
#' @param hitsWithin hitsWithin
#' @param grangesReference grangesReference
#' @param stranded stranded
#' @importFrom dplyr as_tibble 
#' @noRd
initiateHitsDF <- function(hitsWithin, grangesReference, stranded) {
    hitsDF <- as_tibble(hitsWithin)
    hitsDF$chr <-
        as.factor(seqnames(grangesReference)[subjectHits(hitsWithin)])
    hitsDF$start <- start(grangesReference)[subjectHits(hitsWithin)]
    hitsDF$end <- end(grangesReference)[subjectHits(hitsWithin)]
    if (stranded == FALSE) {
        hitsDF$strand <- "*"
    } else {
        hitsDF$strand <-
            as.factor(strand(grangesReference)[subjectHits(hitsWithin)])
    }
    return(hitsDF)
}

#' Main function which calls other gene id assigner functions
#' Returns a list of gene ids for each read class and an 
#' index of which genes are novel
#' @param grl a GrangesList object with read classes
#' @param annotations a GrangesList object with annotations
#' @param min.exonOverlap minimum length of overlap to be assigned to a gene
#' @param fusionMode if TRUE will assign multiple GENEIDs to fusion transcripts, separated by ":"
#' @param maxChainIteration the number of intermediate novel transcripts which will be used to assign gene ids, default: 3
#' @noRd
assignGeneIds <-  function(grl, annotations, min.exonOverlap = 10, fusionMode = FALSE, maxChainIteration = 3) {
  strandedRanges <- as.logical(getStrandFromGrList(grl)!='*')
  mcols(grl)$GENEID =rep(NA, length(grl))
  if(length(annotations)>0) {
    if(any(grepl('\\:', mcols(annotations)$GENEID)) & fusionMode) {
      warning('GENEID contains ":" symbol, fusion transcript assignments might be incorrect')
    }
    mcols(grl)$GENEID[strandedRanges] <- assignGeneIdsByReference(grl[strandedRanges], annotations,
                                          min.exonOverlap = min.exonOverlap,
                                          fusionMode = fusionMode) 
    #iteratively assign gene ids for stranded granges
    newGeneSet <- is.na(mcols(grl)$GENEID) & strandedRanges
    if(sum(newGeneSet != 0)){
        referenceGeneSet <- !is.na(mcols(grl)$GENEID) & strandedRanges
        mcols(grl)$GENEID[newGeneSet] <- assignGeneIdsByReference(grl[newGeneSet], grl[referenceGeneSet],
                                                                    min.exonOverlap = min.exonOverlap,
                                                                    fusionMode = FALSE)  # fusion assignment is only done based on original annotations
    }
    chainCount <- 1  # first iteration is outside of while loop
    while(any(!is.na(mcols(grl)$GENEID[newGeneSet])) & chainCount < maxChainIteration) {
      referenceGeneSet <- newGeneSet & !is.na(mcols(grl)$GENEID) & strandedRanges
      newGeneSet <- is.na(mcols(grl)$GENEID) & strandedRanges
      mcols(grl)$GENEID[newGeneSet] <- assignGeneIdsByReference(grl[newGeneSet], grl[referenceGeneSet],
                                                                min.exonOverlap = min.exonOverlap,
                                                                fusionMode = FALSE) 
      chainCount <- chainCount +1
      }
  }
  newGeneSet <- is.na(mcols(grl)$GENEID) & strandedRanges
  newGeneIds <- assignGeneIdsNoReference(grl[newGeneSet])
  mcols(grl)$GENEID[newGeneSet] <- newGeneIds
  if(any(!strandedRanges)) {
    mcols(grl)$GENEID[!strandedRanges] <- assignGeneIdsByReference(grl[!strandedRanges], 
                                                                   grl[!is.na(mcols(grl)$GENEID)],
                                                       min.exonOverlap = min.exonOverlap,
                                                       fusionMode = FALSE) 
    if(any(is.na(mcols(grl)$GENEID)) & length(annotations)>0) {
        newGeneSet <- is.na(mcols(grl)$GENEID)
        mcols(grl)$GENEID[newGeneSet] <- assignGeneIdsByReference(grl[newGeneSet], 
                                                annotations,
                                                min.exonOverlap = min.exonOverlap,
                                                fusionMode = FALSE) 
    }

    if(any(is.na(mcols(grl)$GENEID))) {
        mcols(grl)$GENEID[is.na(mcols(grl)$GENEID)] <- assignGeneIdsNoReference(grl[is.na(mcols(grl)$GENEID)], prefix = 'unstranded.')
      }
  }
  newGeneSet <- !(mcols(grl)$GENEID %in% mcols(annotations)$GENEID)
  geneIdData <- data.frame(GENEID=mcols(grl)$GENEID, novelGene = newGeneSet)
  if(fusionMode) geneIdData$fusionGene <- grepl('\\:', geneIdData$GENEID)
  return(geneIdData)
}


#' Return gene ids for read classes which overlap
#' with known annotations
#' @param grl a GrangesList object with read classes
#' @param annotations a GrangesList object with annotations
#' @noRd
assignGeneIdsByReference <- function(grl, annotations, min.exonOverlap = 10,
                                     fusionMode=FALSE, prefix = 'Bambu') {
    # (1) assign gene Ids based on first intron match to annotations
    geneRanges <- reducedRangesByGenes(annotations)
    ov=findOverlaps(grl, geneRanges, minoverlap = min.exonOverlap)
    geneIds <- rep(NA, length(grl))
    uniqueHits <- which(queryHits(ov) %in% which(countQueryHits(ov)==1))
    geneIds[queryHits(ov)[uniqueHits]] <- 
        names(geneRanges)[subjectHits(ov)[uniqueHits]]
    if(length(ov)>0){
        ## next for non unique hits select one gene (maximum overlap)
        multiHits <- which(queryHits(ov) %in% which(countQueryHits(ov)>1))
        rangeIntersect= intersect(ranges(grl[queryHits(ov)[multiHits]]),
                                    ranges(geneRanges[subjectHits(ov)[multiHits]]))
        filteredMultiHits =  data.frame(queryHits = queryHits(ov)[multiHits], 
                                        intersectWidth = sum(width(rangeIntersect)), 
                                         subjectHits = subjectHits(ov)[multiHits])
        if(fusionMode) {
        filteredMultiHits <- filteredMultiHits %>%  
            filter(intersectWidth>min.exonOverlap) %>%  
            mutate(geneid = names(geneRanges)[subjectHits]) %>%  distinct() %>% 
            group_by(queryHits) %>% summarise(geneid = paste(geneid, collapse=':'))
        geneIds[filteredMultiHits$queryHits] <- filteredMultiHits$geneid
        } else {
        filteredMultiHits <- filteredMultiHits %>% 
            group_by(queryHits) %>% arrange(desc(intersectWidth)) %>% 
            dplyr::slice(1)
        geneIds[filteredMultiHits$queryHits] <- 
            names(geneRanges)[filteredMultiHits$subjectHits]
        } 
    }
    return(geneIds)
}

#' Create new gene ids for groups of overlapping read classes which 
#' don't overlap with known annotations. 
#' @param grl a GrangesList object with read classes
#' @noRd
assignGeneIdsNoReference <- function(grl, prefix = 'Bambu') {
    newTxIds <- seq_len(length(grl))
    newGeneByNewTxId <- rep(NA, length(newTxIds))
    if(length(grl)==0){
        return(newGeneByNewTxId)
    }
    newTxIdsByExon <- rep(newTxIds, times=elementNROWS(grl))
    grSetReduced <- reduce(unlist(grl), with.revmap=TRUE)
    newExonId <- seq_len(length(grSetReduced))
    revmap=mcols(grSetReduced)$revmap
    newExonIdByMergedExon <- rep(newExonId, times=elementNROWS(revmap))
    newTxIdsByMergedExon <- newTxIdsByExon[unlist(revmap)]
    # (1) create initial gene, exon, transcript map
    exonTxMap <- tibble(newExonId=newExonIdByMergedExon, 
                        newTxId=newTxIdsByMergedExon) %>% distinct()
    geneExonMap <-tibble(newGeneId=newExonIdByMergedExon, 
                         newExonId=newExonIdByMergedExon) %>% distinct()
    geneTxMap <- tibble(newGeneId=newExonIdByMergedExon, 
                        newTxId=newTxIdsByMergedExon) %>% distinct()
    # (2) select genes with only unique transcripts (complete assignment)
    exonGeneMap_filter1 <-  geneTxMap %>% group_by(newTxId) %>% 
        mutate(nTx=n()) %>% group_by(newGeneId) %>% filter(sum(nTx)==n()) 
    newGeneByNewTxId[exonGeneMap_filter1$newTxId] <- 
        paste0(prefix, "Gene", exonGeneMap_filter1$newGeneId)
    
    if(any(is.na(newGeneByNewTxId))) {
        refGeneTxMap = assignGeneIdsNonAssigned(geneTxMap, exonTxMap, 
            geneExonMap, exonGeneMap_filter1, newExonId)
        newGeneIds = paste0(prefix, "Gene", refGeneTxMap$newGeneId)
        newGeneByNewTxId[refGeneTxMap$newTxId]<-newGeneIds
    }
    return(newGeneByNewTxId)
}

#' Interal function which groups read classes that overlap
#' @noRd
assignGeneIdsNonAssigned = function(geneTxMap, exonTxMap, geneExonMap, 
                                    exonGeneMap_filter1, newExonId){
    # (3.1) second iteration: non assigned genes
    geneTxMap <- geneTxMap %>% 
        filter(!(newGeneId %in% exonGeneMap_filter1$newGeneId))
    exonTxMap <- exonTxMap %>% 
        filter(!(newTxId %in% exonGeneMap_filter1$newTxId))
    geneExonMap <- geneExonMap %>% 
        filter(!(newGeneId %in% exonGeneMap_filter1$newGeneId))
    
    ## (1) select gene Ids (first exons, can't be merged)
    refGeneExonList = getRefGeneExonList(exonTxMap, geneExonMap)
    #extend to the right
    refGeneTxMap <- left_join(refGeneExonList,  exonTxMap, 
                            by=c('newExonId.merge'='newExonId')) %>% 
        dplyr::select(newGeneId, newTxId) %>% distinct()
    refGeneTxMap <- rbind(geneTxMap %>% filter(newGeneId %in% 
        refGeneTxMap$newGeneId), refGeneTxMap) %>% distinct()
    refGenExonMap <- left_join(refGeneTxMap, exonTxMap, by = "newTxId") %>% 
        dplyr::select(newGeneId, newExonId) %>% distinct()
    length_tmp = 0
    while(length_tmp<nrow(refGenExonMap)) {
        length_tmp=nrow(refGenExonMap)
        refGeneTxMap <- left_join(refGenExonMap,  exonTxMap,
                                  by = "newExonId") %>% 
            dplyr::select(newGeneId, newTxId) %>% distinct()
        refGenExonMap <- left_join(refGeneTxMap, exonTxMap,
                                   by = "newTxId") %>% 
            dplyr::select(newGeneId, newExonId) %>% distinct()
    }
    # combined gene ids
    refGeneTxMapMins = refGeneTxMap %>% group_by(newTxId) %>% filter(n() > 1) %>% filter(newGeneId == min(newGeneId)) %>% ungroup()
    refGeneTxMapNotMins = refGeneTxMap %>% group_by(newTxId) %>% filter(newGeneId != min(newGeneId)) %>% ungroup()
    geneGeneMap <- left_join(refGeneTxMapMins, dplyr::rename(refGeneTxMapNotMins, 
        newGeneId.merge=newGeneId), by = "newTxId") %>% 
        dplyr::select(newGeneId, newGeneId.merge) %>% distinct()
    refGeneTxMap <- rbind(refGeneTxMap %>% filter(!(newGeneId %in% 
        geneGeneMap$newGeneId.merge)), left_join(geneGeneMap, refGeneTxMap, 
        by=c('newGeneId.merge'='newGeneId')) %>% 
        dplyr::select(newGeneId, newTxId)) %>% distinct()
    return(refGeneTxMap)
}

#' Small function to meet bioconductor formatting requirements
#' @noRd
getRefGeneExonList = function(exonTxMap, geneExonMap){
    refGeneExonList <- left_join(exonTxMap, 
        dplyr::rename(exonTxMap, newExonId.merge=newExonId), 
        by = "newTxId") %>% 
        filter(newExonId<newExonId.merge) %>% 
        filter(!(newExonId %in% newExonId.merge)) %>% 
        dplyr::select(newExonId, newExonId.merge) %>% 
        distinct() %>% left_join(geneExonMap, by = "newExonId")  %>%  
        dplyr::select(newGeneId, newExonId.merge) %>% distinct()
    return(refGeneExonList)
}
GoekeLab/bambu documentation built on Oct. 26, 2024, 9:45 a.m.