moduleMemberCorrelations: moduleMemberCorrelations

Description Usage Arguments Value Author(s) Examples

Description

Computes the relation between peptides and eigenvector summaries and also peptides and phenotypes.

Usage

1

Arguments

pnet

The peptide net object

pepdat

The peptide data matrix

phenotypes

The matrix of traits

Value

Matrix of Pearson correlations with peptides in rows.

Author(s)

David L Gibbs

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
data(ProCoNA_Data)
#net1 <- buildProconaNetwork("peptide network", peptideData)
n <- length(samples(net1))
phenotypes <- matrix(rnorm(10*n), nrow=60)
pepcor <- moduleMemberCorrelations(net1, peptideData, phenotypes)

# To plot the heatmap: 
# moduleCors <- correlationWithPhenotypesHeatMap(net1, phenotypes, modules = 1:5, 
#    plot = NULL, title = "Module-trait relationships", textSize = 0.5)

#########################################################################
# quick function to write out the tables for specific modules.
#moduleData <- function(pepnet, pepcors, module, pepinfo, fileprefix) {
#  moduleX <- pepnet@peptides[which(pepnet@mergedColors==module)]
#  moduleInfo <- pepinfo[which(pepinfo$Mass_Tag_ID %in% moduleX),]
#  moduleCors <- pepcors[which(pepcors$Module==module),]
#  corname <- paste(fileprefix, "_correlations.csv", sep="")
#  write.table(moduleCors, file=corname, sep=",", row.names=F)
#  infoname <- paste(fileprefix, "_peptide_info.csv", sep="")
#  write.table(moduleInfo, file=infoname, sep=",", row.names=F)
#}
########################################################################

# WRITE OUT A TABLE WITH THE BELOW FUNCTION CALL  :)#
# moduleData(peptideNetwork, pepcor, 1, masstagdb, "Module_1")

Gibbsdavidl/ProCoNA documentation built on May 8, 2019, 7:51 p.m.