inst/unitTests/test_calcVarPart.R

test_calcVarPart = function(){

	library(variancePartition)
	library(lme4)
	library(MASS)

	fit = lm(Reaction ~ Days, sleepstudy)
	calcVarPart(fit)

	fit = glm(Reaction ~ Days, data=sleepstudy)
	calcVarPart(fit)

	fit = lmer(Reaction ~ Days + (1|Subject), data=sleepstudy)
	calcVarPart(fit)

	## Dobson (1990) Page 93: Randomized Controlled Trial :
	counts <- c(18,17,15,20,10,20,25,13,12)
	outcome <- gl(3,1,9)
	treatment <- gl(3,3)
	df = data.frame(treatment, outcome, counts) # showing data
	glm.D93 <- glm(counts ~ outcome + treatment, data = df, family = poisson())
	calcVarPart(glm.D93)

	fitnb <- glm.nb(counts ~ outcome + treatment, data = df)
	calcVarPart(fitnb)

	# Fixed effects models
	######################

	# binomial
	gm1 <- glm(cbind(incidence, size - incidence) ~ period + herd,
	                   data = cbpp, family = binomial)
	calcVarPart(gm1)

	# Poisson
	gm1 <- glm(incidence ~ offset(log(size)) + period + herd,
	                   data = cbpp, family = poisson)
	calcVarPart(gm1)


	# negative binomial mixed model
	gm1 <- glm.nb(incidence ~ offset(log(size)) + period + herd,
	                   data = cbpp)
	calcVarPart(gm1)

	# mixed models
	##############

	# binomial
	gm1 <- glmer(cbind(incidence, size - incidence) ~ (1|period) + (1 | herd),
	                   data = cbpp, family = binomial)
	calcVarPart(gm1)

	# Poisson
	gm1 <- glmer(incidence ~ offset(log(size)) + (1|period) + (1 | herd),
	                   data = cbpp, family = poisson)
	calcVarPart(gm1)


	# negative binomial
	gm1 <- glmer.nb(incidence ~ offset(log(size)) + (1|period) + (1 | herd),
	                   data = cbpp)
	calcVarPart(gm1)

	y = with(cbpp, log(incidence+.5) - log(size))
	gm1 <- lmer(y ~ (1|period) + (1 | herd), data = cbpp)
	calcVarPart(gm1)

	TRUE
}


test_calcVarPart_weights = function(){

	library(variancePartition)
	library(lme4)
	library(RUnit)
	# source("/Users/gabrielhoffman/workspace/repos/variancePartition/R/./checkModelStatus.R")
	# source("/Users/gabrielhoffman/workspace/repos/variancePartition/R/calcVarPart.R")

	# set weights
	w = c(10000, 2:nrow(sleepstudy))
	w = w / mean(w) 

	# lm() 
	#######
	fit = lm(Reaction ~ Days, sleepstudy)

	rsq = summary(fit)$r.squared
	rsq_vp = calcVarPart(fit)['Days']
	checkEqualsNumeric(rsq, rsq_vp)

	# lm() weighted
	#######
	fit = lm(Reaction ~ Days, sleepstudy, weights=w)

	rsq = summary(fit)$r.squared
	rsq_vp = calcVarPart(fit)['Days']
	checkEqualsNumeric(rsq, rsq_vp)

	# glm() 
	#######

	fit1 = lm(Reaction ~ Days, sleepstudy)
	fit2 = glm(Reaction ~ Days, data=sleepstudy)

	checkEqualsNumeric(calcVarPart(fit1), calcVarPart(fit2))

	# glm() weighted
	#######

	fit1 = lm(Reaction ~ Days, data=sleepstudy, weights=w)
	fit2 = glm(Reaction ~ Days, data=sleepstudy, weights=w)

	checkEqualsNumeric(calcVarPart(fit1), calcVarPart(fit2))

	# lmer()
	########

	set.seed(13)
	# random effect with zero estimated variance component
	sleepstudy$tmp = sample(letters[1:2], nrow(sleepstudy), replace=TRUE)

	fit1 = lm(Reaction ~ Days, sleepstudy)
	fit2 = lmer(Reaction ~ Days + (1|tmp), data=sleepstudy, REML=FALSE)

	calcVarPart(fit1)
	calcVarPart(fit2)[-1]

	checkEqualsNumeric(calcVarPart(fit1), calcVarPart(fit2)[-1])

	# lmer() weighted
	########

	set.seed(13)
	# random effect with zero estimated variance component
	sleepstudy$tmp = sample(letters[1:2], nrow(sleepstudy), replace=TRUE)

	fit1 = lm(Reaction ~ Days, sleepstudy, weights=w)
	fit2 = lmer(Reaction ~ Days + (1|tmp), data=sleepstudy, weights=w, REML=FALSE)

	calcVarPart(fit1)
	calcVarPart(fit2)

	checkEqualsNumeric(calcVarPart(fit1), calcVarPart(fit2)[-1])
}
GabrielHoffman/variancePartition documentation built on Jan. 6, 2025, 6:01 a.m.