R/get_prediction.R

# Gabriel Hoffman
# June 2, 2020
#

#' Compute predicted value of formula for linear (mixed) model
#'
#' Compute predicted value of formula for linear (mixed) model for with \code{lm} or \code{lmer}
#'
#' @param fit model fit with \code{lm} or \code{lmer}
#' @param formula formula of fixed and random effects to predict
#'
#' @return Predicted values from formula using parameter estimates from fit linear (mixed) model
#'
#' @details Similar motivation as \code{lme4:::predict.merMod()}, but that function cannot use just a subset of the fixed effects: it either uses none or all.  Note that the intercept is included in the formula by default.  To exclude it from the prediction use \code{~ 0 + ...} syntax
#'
#' @examples
#'
#' library(lme4)
#'
#' # Linear model
#' fit <- lm(Reaction ~ Days, sleepstudy)
#'
#' # prediction of intercept
#' get_prediction(fit, ~1)
#'
#' # prediction of Days without intercept
#' get_prediction(fit, ~ 0 + Days)
#'
#' # Linear mixed model
#'
#' # fit model
#' fm1 <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy)
#'
#' # predict Days, but exclude intercept
#' get_prediction(fm1, ~ 0 + Days)
#'
#' # predict Days and (Days | Subject) random effect, but exclude intercept
#' get_prediction(fm1, ~ 0 + Days + (Days | Subject))
#'
#' @export
#' @docType methods
#' @rdname get_prediction-method
#' @importFrom lme4 fixef nobars
#' @importFrom stats model.matrix
setGeneric("get_prediction", function(fit, formula) {
  standardGeneric("get_prediction")
})

#' @export
#' @rdname get_prediction-method
#' @aliases get_prediction,lmerMod-method
setMethod("get_prediction", "lmerMod", function(fit, formula) {
  # initialize to zeros
  pred_fixed <- pred_rand <- rep(0, length(fit@resp$y))

  # if a random effect is specified
  if (!is.null(findbars(formula))) {
    # RANDOM
    #-------
    # Get sum of BLUP's for the specified random effects

    ran_form <- reOnly(formula)

    pred_rand <- predict(fit, re.form = ran_form, random.only = TRUE)
  }

  # FIXED
  #------
  # Compute X\beta for the specified set of fixed effects

  # formula of only fixed effects
  fixed_form <- nobars(formula)

  # create design matrix from formula
  dsgn <- tryCatch(model.matrix(fixed_form, fit@frame),
    error = function(e) {
      lme4::getME(fit, "X")[, all.vars(fixed_form), drop = FALSE]
    }
  )

  # only extract coefficients matching design
  beta <- fixef(fit)[colnames(dsgn)]

  if (length(beta) > 0) {
    # prediction of fixed effects
    pred_fixed <- as.numeric(dsgn %*% beta)
  }

  # combine
  y_pred <- pred_rand + pred_fixed
  names(y_pred) <- rownames(dsgn)
  y_pred
})


#' @export
#' @rdname get_prediction-method
#' @aliases get_prediction,lm-method
setMethod("get_prediction", "lm", function(fit, formula) {
  dsgn <- model.matrix(formula, fit$model)
  beta <- coef(fit)[colnames(dsgn)]

  y_pred <- as.numeric(dsgn %*% beta)
  names(y_pred) <- rownames(dsgn)

  y_pred
})
GabrielHoffman/variancePartition documentation built on Jan. 6, 2025, 6:01 a.m.