#' decontam functions
#'
#' The \code{decontam} functions \code{isContaminant} and
#' \code{isNotContaminant} are made available for
#' \code{\link[SummarizedExperiment:SummarizedExperiment-class]{SummarizedExperiment}}
#' objects.
#'
#' @inheritParams getDissimilarity
#' @inheritParams getDominant
#'
#' @param seqtab,x a
#' \code{\link[SummarizedExperiment:SummarizedExperiment-class]{SummarizedExperiment}}
#'
#' @param name \code{Character scalar}. A name for the column of the
#' \code{colData} where results will be stored.
#' (Default: \code{"isContaminant"})
#'
#' @param concentration \code{Character scalar} or \code{NULL}. Defining
#' a column with numeric values from the \code{colData} to use as
#' concentration information. (Default: \code{NULL})
#'
#' @param control \code{Character scalar} or \code{NULL}. Defining a
#' column with logical values from the \code{colData} to define control and
#' non-control samples. (Default: \code{NULL})
#'
#' @param batch \code{Character scalar} or \code{NULL}. Defining a
#' column with values interpretable as a factor from the \code{colData} to use
#' as batch information. (Default: \code{NULL})
#'
#' @param detailed \code{Logical scalar}. If \code{TRUE}, the return value is a
#' data.frame containing diagnostic information on the contaminant decision.
#' If FALSE, the return value is a logical vector containing the binary
#' contaminant classifications. (Default: \code{TRUE})
#'
#' @param ... arguments passed onto
#' \code{\link[decontam:isContaminant]{decontam:isContaminant}} or
#' \code{\link[decontam:isNotContaminant]{decontam:isNotContaminant}}.
#' Currently these are \code{method} and \code{batch.combine}.
#'
#' @param threshold \code{Numeric scalar}.. See
#' \code{\link[decontam:isContaminant]{decontam:isContaminant}} or
#' \code{\link[decontam:isNotContaminant]{decontam:isNotContaminant}}
#'
#' @param normalize \code{Logical scalar}. See
#' \code{\link[decontam:isContaminant]{decontam:isContaminant}} or
#' \code{\link[decontam:isNotContaminant]{decontam:isNotContaminant}}
#'
#' @param ...
#' \itemize{
#' \item for \code{isContaminant}/ \code{isNotContaminant}: arguments
#' passed on to \code{\link[decontam:isContaminant]{decontam:isContaminant}}
#' or \code{\link[decontam:isNotContaminant]{decontam:isNotContaminant}}
#' \item for \code{addContaminantQC}/\code{addNotContaminantQC}: arguments
#' passed on to \code{isContaminant}/ \code{isNotContaminant}
#' }
#'
#' @return for \code{isContaminant}/ \code{isNotContaminant} a \code{DataFrame}
#' or for \code{addContaminantQC}/\code{addNotContaminantQC} a modified object
#' of \code{class(x)}
#'
#' @name isContaminant
#'
#' @importFrom decontam isContaminant isNotContaminant
#'
#' @seealso
#' \code{\link[decontam:isContaminant]{decontam:isContaminant}},
#' \code{\link[decontam:isNotContaminant]{decontam:isNotContaminant}}
#'
#' @examples
#' data(esophagus)
#' # setup of some mock data
#' colData(esophagus)$concentration <- c(1,2,3)
#' colData(esophagus)$control <- c(FALSE,FALSE,TRUE)
#'
#' isContaminant(esophagus,
#' method = "frequency",
#' concentration = "concentration")
#' esophagus <- addContaminantQC(esophagus,
#' method = "frequency",
#' concentration = "concentration")
#' colData(esophagus)
#'
#' isNotContaminant(esophagus, control = "control")
#' esophagus <- addNotContaminantQC(esophagus, control = "control")
#' colData(esophagus)
NULL
#' @rdname isContaminant
#' @export
setMethod("isContaminant", signature = c(seqtab = "SummarizedExperiment"),
function(
seqtab,
assay.type = assay_name, assay_name = "counts",
name = "isContaminant",
concentration = NULL,
control = NULL,
batch = NULL,
threshold = 0.1,
normalize = TRUE,
detailed = TRUE,
...){
# input check
.check_assay_present(assay.type, seqtab)
if(!.is_a_string(name)){
stop("'name' must be single character value.",call. = FALSE)
}
if(!is.numeric(threshold) || length(threshold) != 1L){
stop("'threshold' must be single numeric value.", call. = FALSE)
}
if(!.is_a_bool(normalize)){
stop("'normalize' must be TRUE or FALSE.", call. = FALSE)
}
if(!.is_a_bool(detailed)){
stop("'detailed' must be TRUE or FALSE.", call. = FALSE)
}
#
if(!is.null(concentration)){
concentration <- retrieveCellInfo(
seqtab, by = concentration, search = "colData")$value
if(!is.numeric(concentration)){
stop("'concentration' must define a column of colData() ",
"containing numeric values.", call. = FALSE)
}
}
if(!is.null(control)){
control <- retrieveCellInfo(
seqtab, by = control, search = "colData")$value
if(!is.logical(control)){
stop("'control' must define a column of colData() ",
"containing logical values.", call. = FALSE)
}
}
if(!is.null(batch)){
batch <- retrieveCellInfo(
seqtab, by = batch, search = "colData")$value
batch <- factor(batch, sort(unique(batch)))
}
mat <- assay(seqtab,assay.type)
contaminant <- isContaminant(
t(mat),
conc = concentration,
neg = control,
batch = batch,
threshold = threshold,
normalize = normalize,
detailed = detailed,
...)
if(is.data.frame(contaminant)){
contaminant <- DataFrame(contaminant)
}
attr(contaminant, "metadata") <- list(
conc = concentration,
neg = control,
batch = batch,
threshold = threshold,
normalize = normalize,
detailed = detailed)
contaminant
}
)
#' @rdname isContaminant
#' @export
setMethod("isNotContaminant", signature = c(seqtab = "SummarizedExperiment"),
function(
seqtab,
assay.type = assay_name, assay_name = "counts",
name = "isNotContaminant",
control = NULL,
threshold = 0.5,
normalize = TRUE,
detailed = FALSE,
...){
# input check
.check_assay_present(assay.type, seqtab)
if(!.is_a_string(name)){
stop("'name' must be single character value.",call. = FALSE)
}
if(!is.numeric(threshold) || length(threshold) != 1L){
stop("'threshold' must be single numeric value.", call. = FALSE)
}
if(!.is_a_bool(normalize)){
stop("'normalize' must be TRUE or FALSE.", call. = FALSE)
}
if(!.is_a_bool(detailed)){
stop("'detailed' must be TRUE or FALSE.", call. = FALSE)
}
#
if(!is.null(control)){
control <- retrieveCellInfo(seqtab, by = control,
search = "colData")$value
if(!is.logical(control)){
stop("'control' must define a column of colData() ",
"containing logical values.", call. = FALSE)
}
}
mat <- assay(seqtab,assay.type)
not_contaminant <- isNotContaminant(
t(mat),
neg = control,
threshold = threshold,
normalize = normalize,
detailed = detailed,
...)
if(is.data.frame(not_contaminant)){
not_contaminant <- DataFrame(not_contaminant)
}
attr(not_contaminant, "metadata") <- list(
neg = control,
threshold = threshold,
normalize = normalize,
detailed = detailed)
not_contaminant
}
)
#' @rdname isContaminant
#' @export
setMethod("addContaminantQC", signature = c("SummarizedExperiment"),
function(x, name = "isContaminant", ...){
contaminant <- isContaminant(x, ...)
# save metadata
add_metadata <- attr(contaminant, "metadata")
attr(contaminant, "metadata") <- NULL
names(add_metadata) <- paste0("decontam_",names(add_metadata))
#
rowData(x)[[name]] <- contaminant
metadata(x) <- c(metadata(x),add_metadata)
x
}
)
#' @rdname isContaminant
#' @export
setMethod("addNotContaminantQC", signature = c("SummarizedExperiment"),
function(x, name = "isNotContaminant", ...){
not_contaminant <- isNotContaminant(x, ...)
# save metadata
add_metadata <- attr(not_contaminant, "metadata")
attr(not_contaminant, "metadata") <- NULL
names(add_metadata) <- paste0("decontam_not_",names(add_metadata))
#
rowData(x)[[name]] <- not_contaminant
metadata(x) <- c(metadata(x),add_metadata)
x
}
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.