data("count_table", package = "ScreenR")
data("annotation_table", package = "ScreenR")
data <- count_table
annotaion <- annotation_table
groups <- factor(c(
"T1/T2", "T1/T2", "Treated", "Treated", "Treated",
"Control", "Control", "Control", "Treated", "Treated", "Treated",
"Control", "Control", "Control"
))
palette <- c(
"#1B9E75", "#1B9E75", "#D95F02", "#D95F02", "#D95F02",
"#7570B3", "#7570B3", "#7570B3", "#E7298A", "#E7298A", "#E7298A",
"#66A61E", "#66A61E", "#66A61E"
)
create_test_object <- function() {
data <- data %>%
dplyr::filter(Barcode != "*")
colnames(data) <- c(
"Barcode", "T1", "T2", "Time3_TRT_A", "Time3_TRT_B", "Time3_TRT_C",
"Time3_A", "Time3_B", "Time3_C", "Time4_TRT_A", "Time4_TRT_B",
"Time4_TRT_C", "Time4_A", "Time4_B", "Time4_c"
)
obj <- create_screenr_object(
table = data,
annotation = annotaion, groups = groups, replicates = c("")
)
obj <- normalize_data(obj)
obj <- compute_data_table(obj)
obj@data_table <- obj@data_table %>%
dplyr::filter(Gene %in% paste0("Gene_", seq(1, 10)))
obj@normalized_count_table <- obj@normalized_count_table %>%
dplyr::filter(Barcode %in% obj@data_table$Barcode)
obj@count_table <- obj@count_table %>%
dplyr::filter(Barcode %in% obj@data_table$Barcode)
obj@annotation_table <- obj@annotation_table %>%
dplyr::filter(Barcode %in% obj@data_table$Barcode)
return(obj)
}
test_that("ROAST", {
object <- create_test_object()
matrix <- model.matrix(~ object@groups)
colnames(matrix) <- c("Control", "T1/T2", "Treated")
roast_hit <- suppressWarnings(find_roast_hit(
screenR_Object = object,
matrix_model = matrix, contrast = "Treated"
))
expect_equal(class(roast_hit)[[1]], "tbl_df")
})
test_that("Camera", {
object <- create_test_object()
matrix <- model.matrix(~ object@groups)
colnames(matrix) <- c("Control", "T1/T2", "Treated")
camera_hit <- suppressWarnings(find_camera_hit(
screenR_Object = object,
matrix_model = matrix, contrast = "Treated"
))
expect_equal(class(camera_hit)[1], "tbl_df")
})
test_that("Hit Z-score per giorno", {
object <- create_test_object()
# In order to speed up the test we will compute the metrics only for a
# subset of the genes
genes <- c("Gene_1", "Gene_5")
object@data_table <- object@data_table[object@data_table$Gene %in% genes, ]
table <- compute_metrics(object,
treatment = "TRT", control = "Time3",
day = "Time3"
)
hit_table <- find_zscore_hit(table, number_barcode = 2)
expect_equal(class(hit_table)[1], "tbl_df")
})
test_that("Find_Zscore_hit mean", {
object <- create_test_object()
genes <- c("Gene_1", "Gene_5")
object@data_table <- object@data_table[object@data_table$Gene %in% genes, ]
table <- compute_metrics(object,
control = "Time3", treatment = "TRT",
day = c("Time3")
)
hit_zscore <- find_zscore_hit(table, number_barcode = 2, metric = "mean")
expect_equal(class(hit_zscore)[[1]], "tbl_df")
})
test_that("Find_Score_hit median ", {
object <- create_test_object()
genes <- c("Gene_1", "Gene_5")
object@data_table <- object@data_table[object@data_table$Gene %in% genes, ]
table <- compute_metrics(object,
control = "Time3", treatment = "TRT",
day = c("Time3")
)
hit_zscore <- find_zscore_hit(table, number_barcode = 4)
expect_equal(class(hit_zscore)[[1]], "tbl_df")
})
test_that("find_robust_zscore_hit median ", {
object <- create_test_object()
genes <- c("Gene_1", "Gene_5")
object@data_table <- object@data_table[object@data_table$Gene %in% genes, ]
table <- compute_metrics(object,
control = "Time3", treatment = "TRT",
day = c("Time3")
)
hit_zscore_R <- find_robust_zscore_hit(table, number_barcode = 2)
expect_equal(class(hit_zscore_R)[[1]], "grouped_df")
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.