filtsep_bin | R Documentation |
filtsep_bin
Converts PAC_filtsep data.frame output into a binary
(hit-no-hit) data.frame
filtsep_bin(filtsep_out)
filtsep_out |
PAC_filtsep output data.frame, where each column contains the names of sequences that passed the filter for a specific group specified by a pheno_target object. |
Given a PAC_filtsep output data.frame, where each column contains the sequences that passed the filter for a specific group specified in pheno_target, filtsep_bin converts this into a data.frame where sequences are reported as hit (=1) or no hit (=0). Such binary coded group occurrence can for example be used by UpSetR::upset to generate visualization of overlaps using UpSet plots.
data.frame where each uniques sequence (row names) in filtsep_out are reported as hit (=1) or no hit (=0) across samples or sample groups (column names).
https://github.com/Danis102 for updates on the current package.
Other PAC analysis:
PAC_covplot()
,
PAC_deseq()
,
PAC_filter()
,
PAC_filtsep()
,
PAC_gtf()
,
PAC_jitter()
,
PAC_mapper()
,
PAC_nbias()
,
PAC_norm()
,
PAC_pca()
,
PAC_pie()
,
PAC_saturation()
,
PAC_sizedist()
,
PAC_stackbar()
,
PAC_summary()
,
PAC_trna()
,
as.PAC()
,
map_rangetype()
,
tRNA_class()
load(system.file("extdata", "drosophila_sRNA_pac_filt_anno.Rdata",
package = "seqpac", mustWork = TRUE))
## Keep sequences with 5 counts (threshold) in 100% (coverage) of
## samples in a group:
# Use PAC_filtsep to find sequences
filtsep <- PAC_filtsep(pac, norm="counts", threshold=5,
coverage=100, pheno_target= list("stage"))
# Filter by unique sequences passing filtsep
filtsep <- unique(do.call("c", as.list(filtsep)))
pac_filt <- PAC_filter(pac, subset_only = TRUE, anno_target= filtsep)
# Find overlap
olap <- reshape2::melt(filtsep,
measure.vars = c("Stage1", "Stage3", "Stage5"),
na.rm=TRUE)
## Upset plot using the UpSetR package
# (when output="binary" PAC_filtsep uses filtsep_bin for binary conversion
# Use PAC_filtsep with binary output
filtsep_bin <- PAC_filtsep(pac, norm="counts", threshold=5,
coverage=100, pheno_target= list("stage"),
output="binary")
# Plot Venn diagram or UpSetR
#
# plot(venneuler::venneuler(data.frame(olap[,2], olap[,1])))
#
# UpSetR::upset(filtsep_bin, sets = colnames(filtsep_bin),
# mb.ratio = c(0.55, 0.45), order.by = "freq", keep.order=TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.