R/positive_strand_function.r

Defines functions positive_strand_function

##########################positive strand############################
#This part of the script runs only in case of the dataframe of
#positive strand is not empty
########################ggplot positive strand#######################
positive_strand_function <-
  function(data_p,
           data,
           tmp.c1,
           df1_1,
           frag,
           i,
           Limit = Limit,
           shape = shape,
           col_outiler = col_outiler,
           col_coverage = col_coverage,
           shape_outlier = shape_outlier,
           limit_intensity = limit_intensity,
           face = face,
           tick_length = tick_length,
           arrow.color = arrow.color,
           minVelocity = minVelocity,
           medianVelocity = medianVelocity,
           shape_above20 = shape_above20,
           col_above20 = col_above20,
           col_outlierabove10 = col_outlierabove10,
           shape_outlierabove10 = shape_outlierabove10,
           fontface = fontface,
           coverage = coverage,
           axis_text_y_size = axis_text_y_size,
           axis_title_y_size = axis_title_y_size,
           TI_threshold = TI_threshold,
           p_value_TI = p_value_TI,
           termination_threshold =
             termination_threshold,
           iTSS_threshold = iTSS_threshold,
           p_value_int = p_value_int,
           p_value_event = p_value_event,
           p_value_hl = p_value_hl,
           event_duration_ps =
             event_duration_ps,
           event_duration_itss =
             event_duration_itss,
           HL_threshold_1 = HL_threshold_1,
           HL_threshold_2 = HL_threshold_2,
           vel_threshold = vel_threshold,
           HL_threshold_color =
             HL_threshold_color,
           vel_threshold_color = vel_threshold_color,
           ps_color = ps_color,
           iTSS_I_color = iTSS_I_color) {
    #first plot for intensity segments
    p1 <-
      ggplot(data_p, aes(x = get('position'),
                         y = get('intensity'))) +
      scale_x_continuous(limits = c(frag[i], frag[i + 1])) +
      scale_y_continuous(
        trans = 'log2',
        labels = label_log2_function,
        limits = c(NA, NA),
        sec.axis = sec_axis(~ . * 1, name = "Coverage",
                            labels = label_square_function)
      ) +
      labs(y = "Intensity [A.U]") +
      theme_bw() +
      background_grid(major = "xy", minor = "none") +
      theme(
        legend.title = element_blank(),
        axis.title.y = element_text(colour = 5, size = axis_title_y_size),
        axis.text.y = element_text(
          angle = 90,
          hjust = 1,
          size = axis_text_y_size
        ),
        axis.text.x = element_blank(),
        axis.title.x = element_blank(),
        panel.grid.major.x = element_blank(),
        panel.grid.minor.x = element_blank(),
        legend.position = "none",
        plot.margin = margin(.1, .2, .1, .2, "cm"),
        panel.border = element_blank()
      )
    ###########################TI plot positive strand####################
    #plot Transcription interference, upon the p_value, if significant, an
    #asterisk is added.
    if (length(grep("TI", data_p$flag)) != 0) {
      #grep only flagged probes/bins with TI
      df1_ti_a <- data_p[grep("TI", data_p$flag), ]
      for (l in seq_along(unique(df1_ti_a$TU))) {
        df1_ti <- df1_ti_a[which(df1_ti_a$TU == unique(df1_ti_a$TU)[l]), ]
        #grep only TI without any termination as NA, T or O
        df1_ti <-
          df1_ti[grep(paste0("\\TI_\\d+", "$"),
                      df1_ti$TI_termination_fragment), ]
        #grep only non-NA rows
        df1_ti <-
          df1_ti[!is.na(df1_ti$TI_mean_termination_factor), ]
        # Eliminate TI factor above 1
        df1_ti <-
          df1_ti[which(df1_ti$TI_termination_factor < 1), ]
        #TI is ignored if it contains only 3 probes/bins
        if (nrow(df1_ti) < 3 |
            nrow(df1_ti %>% group_by(get('TI_termination_fragment'))) ==
            length(unique(df1_ti$TI_termination_fragment)) |
            all(df1_ti$TI_mean_termination_factor == 0)) {
          p1 <- p1
          #geom_step runs only with more observations for each group
          #exists, in opposite case only geom_line from intensity is
          #plotted.
        } else{
          # add a value corresponding to the TI factor relative to the
          # intensity values the value plotted dividing the intensity
          # mean by (1 - TI factor)
          df1_ti$value_d <-
            df1_ti$intensity_mean_fragment /
            (1 - df1_ti$TI_termination_factor)
          df1_ti$value_l <-
            df1_ti$intensity_mean_fragment /
            (1 - df1_ti$TI_mean_termination_factor)
          if (length(unique(df1_ti$TI_termination_fragment)) == 1) {
            p1 <- p1 +
              geom_line(data = df1_ti,
                        aes(
                          y = get('value_l'),
                          group = get('TI_mean_termination_factor')
                        ),
                        size = .2) +
              geom_point(
                data = df1_ti,
                aes(
                  y = get('value_d'),
                  group = get('TI_termination_fragment')
                ),
                size = .3,
                shape = 1
              )
          } else{
            #plot the corresponding TI fragment, only an horizontal line
            # is added if two TIs segments are present
            df1_ti <-
              indice_function(df1_ti,
                              "TI_termination_fragment")
            df1_ti <-
              df1_ti %>% filter(get('indice') == 1)
            p1 <- p1 +
              geom_step(data = df1_ti,
                        aes(
                          y = get('value_l'),
                          group = get('TI_mean_termination_factor')
                        ),
                        size = .2) +
              geom_point(
                data = df1_ti,
                aes(
                  y = get('value_d'),
                  group = get('TI_termination_fragment')
                ),
                size = .3,
                shape = 1
              )
          }
          # To draw green lines, we need the first dataframe with all TI
          # fragments. TI factors equal to 0
          # at the beginning of the TI represent the start of the TI and
          # is plotted.
          # we select only the first position of each TI fragment
          df1.1_ti <-
            df1_ti[!duplicated(df1_ti$TI_termination_fragment), ]
          #plot vertical lines on the middle of each 2 fragments.
          if (nrow(df1.1_ti) > 1) {
            TIs <- TI_frag_threshold(df1.1_ti, TI_threshold)
            df1.1_ti_thr <-
              df1.1_ti[which(df1.1_ti$TI_termination_fragment %in% TIs), ]
            p1 <- p1 +
              geom_vline(
                df1.1_ti_thr,
                xintercept = df1.1_ti_thr[, "position"],
                colour = "green",
                linetype = "dotted",
                size = .2
              )
            # the condition below is in case TI t-test is NA for some
            # reasons
            if (length(na.omit(df1.1_ti$p_value_TI)) != 0) {
              if (nrow(df1.1_ti %>%
                       filter(get('p_value_TI') < p_value_TI)) != 0) {
                p1 <- p1 +
                  geom_text(
                    data = df1.1_ti,
                    aes(
                      x = get('position'),
                      y = get('intensity_mean_fragment'),
                      label = "Tinterf*"
                    ),
                    fontface = fontface,
                    size = 1.3,
                    check_overlap = TRUE,
                    colour = "green"
                  )
              } else if (nrow(df1.1_ti %>% filter(get('p_value_TI') >
                                                  p_value_TI)) != 0) {
                p1 <- p1 +
                  geom_text(
                    data = df1.1_ti,
                    aes(
                      x = get('position'),
                      y = get('intensity_mean_fragment'),
                      label = "Tinterf"
                    ),
                    fontface = fontface,
                    size = 1.3,
                    check_overlap = TRUE,
                    colour = "green"
                  )
              }
            }
          }
        }
      }
    }
    #######################segment plot positive strand###################
    #first plot for half-life segments
    #select segments without outliers
    data_p <- indice_function(data_p, "HL_fragment")
    # increase the limit to 20 in case 3 or more probes/bins have a HL
    # above 10
    Limit_h_df1 <-
      limit_function(data_p, "half_life", ind = 1)
    if (Limit_h_df1 == 20) {
      Breaks_h <- seq(0, Limit_h_df1, by = 4)
    } else{
      Breaks_h <- seq(0, Limit_h_df1, by = 2)
    }
    df1.h <- secondaryAxis(data_p, "half_life", ind = 1)
    df1.h.o <- outlier_plot(data_p, "half_life", ind = 2, maxvalue = Limit_h_df1)
    #in case only one bin is available and the HL is above 20
    if (all(data_p$half_life > 20)) {
      data_p$half_life <- 20
    }
    p2 <-
      ggplot(data_p, aes(x = get('position'),
                         y = get('half_life'))) +
      scale_x_continuous(limits = c(frag[i], frag[i + 1])) +
      scale_y_continuous(
        limits = c(0, Limit_h_df1),
        breaks = Breaks_h,
        sec.axis = sec_axis(~ . * 1, name = "Half-life [min]", breaks =
                              Breaks_h)
      ) +
      labs(y = "Half-life [min]") +
      theme_bw() +
      background_grid(major = "xy", minor = "none") +
      theme(
        legend.title = element_blank(),
        legend.position = "none",
        axis.title.y = element_text(colour = 6, size = axis_title_y_size),
        axis.text.x = element_blank(),
        axis.title.x = element_blank(),
        axis.text.y = element_text(
          angle = 90,
          hjust = 1,
          size = axis_text_y_size
        ),
        panel.grid.major.x = element_blank(),
        panel.grid.minor.x = element_blank(),
        plot.margin = margin(.1, .2, .1, .2, "cm"),
        panel.border = element_blank()
      )
    #add the second axis for half-life segments plot
    if (length(unique(data_p$half_life)) == 1) {
      if (is.na(unique(data_p$half_life))) {
        p2 <- p2 +
          geom_blank() +
          scale_y_continuous(
            limits = c(0, Limit_h_df1),
            breaks = Breaks_h,
            sec.axis = sec_axis(~ . * 1, name = "Half-life [min]",
                                breaks = Breaks_h)
          )
      }
    }
    #select segments without outliers
    data_p <- indice_function(data_p, "delay_fragment")
    #increase the limit to 20 in case 3 or more probes/bins have a delay
    #above 10
    Limit_df1 <- limit_function(data_p, "delay", ind = 1)
    if (Limit_df1 == 20) {
      Breaks_d <- seq(0, Limit_df1, by = 4)
    } else{
      Breaks_d <- seq(0, Limit_df1, by = 2)
    }
    #first plot for delay segments
    df1.d <- secondaryAxis(data_p, "delay", ind = 1)
    #in case only one bin is available and the delay is above 20
    if (all(data_p$delay > 20)) {
      data_p$delay <- 20
    }
    p3 <-
      ggplot(data_p, aes(x = get('position'), y = get('delay'))) +
      scale_x_continuous(limits = c(frag[i], frag[i + 1])) +
      scale_y_continuous(
        limits = c(0, Limit_df1),
        breaks = Breaks_d,
        sec.axis = sec_axis(~ . * 1, name = "Delay [min]", breaks =
                              Breaks_d)
      ) +
      labs(y = "Delay [min]") +
      theme_bw() +
      background_grid(major = "xy", minor = "none") +
      theme(
        legend.title = element_blank(),
        axis.title.x = element_blank(),
        legend.position = "none",
        axis.title.y = element_text(colour = 4, size = axis_title_y_size),
        axis.text.y = element_text(
          angle = 90,
          hjust = 1,
          size = axis_text_y_size
        ),
        axis.text.x = element_text(size = 6),
        panel.grid.major.x = element_blank(),
        plot.title = element_blank(),
        plot.margin = margin(.1, .2, .2, .2, "cm"),
        panel.border = element_blank()
      )
    #add the second axis for delay segments plot
    if (length(unique(data_p$delay)) == 1) {
      if (is.na(unique(data_p$delay))) {
        p3 <- p3 +
          scale_y_continuous(
            limits = c(0, Limit_df1),
            breaks = Breaks_d,
            sec.axis = sec_axis(~ . * 1, name = "Delay [min]",
                                breaks = Breaks_d)
          )
      }
    }
    #add the segments to the plot base and check
    #intensity is plotted independently if delay/HL data are present or not.
    if (length(na.omit(data_p$delay)) == 0) {
      p1 <- p1 +
        geom_point(size = .5)
      p2 <- p2
      p3 <- p3
    } else if (length(na.omit(data_p$delay)) < 3) {
      p1 <- p1 +
        geom_point(size = .5)
      p2 <- p2 +
        geom_point(size = .5)
      p3 <- p3 +
        geom_point(size = .5)
    } else{
      ######################intensity plot positive strand################
      #add a reference to outliers probes or bins
      data_p <-
        indice_function(data_p, "intensity_fragment")
      #intensities/HL and delay with NA are not plotted, high intensities
      #are plotted with a different shape,
      #outliers probes/bins are plotted with a different color, each
      #segment has a color, a line is added for each segment
      #indicating the mean. "FC*" indicate significant t-test and each
      #segment is labeled.
      if (nrow(data_p %>% filter(get('indice') == 1)) != 0) {
        p1 <- p1 +
          geom_point(data = data_p %>% filter(get('indice') == 1),
                     aes(col = get('intensity_fragment')),
                     size = .5)
        #eliminate outliers probes or bins
        df1_wo <- data_p[which(data_p$indice == 1), ]
        #assign a mean position for the plot
        df1_wo <-
          meanPosition(df1_wo, "intensity_fragment")
        if (length(df1_wo$intensity_fragment) != 0) {
          p1 <- p1 +
            geom_line(data = data_p %>% filter(get('indice') == 1),
                      aes(
                        x = get('position'),
                        y = get('intensity_mean_fragment'),
                        col = get('intensity_fragment')
                      )) +
            geom_text(
              data = df1_wo,
              aes(
                x = get('meanPosi'),
                y = get('intensity_mean_fragment'),
                label = get('intensity_fragment')
              ),
              size = 1.3,
              check_overlap = TRUE
            )
        }
      }
      #plot intensity outliers
      if (nrow(data_p %>% filter(get('indice') == 2)) != 0) {
        p1 <- p1 +
          geom_point(
            data = data_p %>% filter(get('indice') == 2),
            col = col_outiler,
            shape = shape_outlier,
            size = .5
          )
      }
      #in case of coverage is available.
      if (coverage == 1) {
        p1 <- p1 +
          geom_line(data = tmp.c1,
                    aes(x = get('position'), y = coverage),
                    col = col_coverage)
      }
      #######################HL plot positive strand###################
      #plot bins and mean fragments
      data_p <- indice_function(data_p, "HL_fragment")
      if (nrow(data_p %>% filter(get('indice') == 1)) != 0) {
        p2 <- p2 +
          geom_point(data = data_p %>% filter(get('indice') == 1),
                     aes(col = get('HL_fragment')),
                     size = .5)
        #eliminate outliers probes or bins
        df1_wo <- data_p[which(data_p$indice == 1), ]
        #assign a mean position for the plot
        df1_wo <-
          meanPosition(df1_wo, "HL_fragment")
        if (length(df1_wo$HL_fragment) != 0) {
          p2 <- p2 +
            geom_line(data = data_p %>% filter(get('indice') == 1),
                      aes(
                        x = get('position'),
                        y = get('HL_mean_fragment'),
                        col = get('HL_fragment')
                      )) +
            geom_text(
              data = df1_wo,
              aes(
                x = get('meanPosi'),
                y = get('HL_mean_fragment'),
                label = get('HL_fragment')
              ),
              size = 1.3,
              check_overlap = TRUE
            )
        }
      }
      #plot HL outliers
      if (nrow(data_p %>% filter(get('indice') == 2)) != 0) {
        p2 <- p2 +
          geom_point(
            data = data_p %>% filter(get('indice') == 2),
            col = col_outiler,
            shape = shape_outlier,
            size = .5
          )
      }
      #add replaced values to 20
      if (nrow(df1.h %>%
               filter(get('indice') == 1) %>%
               filter(get('half_life') >= 20)) >= 1) {
        p2 <- p2 +
          geom_point(
            data = df1.h %>%
              filter(get('indice') == 1) %>%
              filter(get('half_life') >= 20),
            aes(y = Limit_h_df1),
            col = col_above20,
            shape = shape_above20,
            size = .5
          )
      }
      
      if (nrow(df1.h.o) >= 1) {
        p2 <- p2 +
          geom_point(
            data = df1.h.o,
            aes(y = Limit_h_df1),
            col = col_outlierabove10,
            shape = shape_outlierabove10,
            size = .5
          )
      }
      ########################delay plot positive strand#################
      #assign the indice to df1
      data_p <- indice_function(data_p, "delay_fragment")
      #plot delay bins
      if (nrow(data_p %>%
               filter(get('indice') == 1)) != 0) {
        p3 <- p3 +
          geom_point(data = data_p %>%
                       filter(get('indice') == 1),
                     aes(col = get('delay_fragment')),
                     size = .5)
      }
      #plot delay outliers
      if (nrow(data_p %>%
               filter(get('indice') == 2)) != 0) {
        p3 <- p3 +
          geom_point(
            data = data_p %>%
              filter(get('indice') == 2),
            col = col_outiler,
            shape = shape_outlier,
            size = .5
          )
      }
      #plot the regression line from delay
      #plot of the delay or delay predicted is not always a line close to
      #the real values as delay data is very noisy,
      #the regression line could be far from the real data. In this cases,
      #an internal lm fit from ggplot is applied.
      #in case of slope of delay fragments is 0, the intercept is plotted
      #otherwise the delay (delay.p) is predicted from the slope and
      #plotted.
      if (length(na.omit(data_p$delay)) > 2) {
        df.c <- regr(data_p, ind = 1, data = data)
        #delay_mean column is added to draw a line in case of velocity
        #is NA or equal to 60.
        #the mean of the delay is calculated excluding outliers
        data_p$delay_mean <-
          delay_mean(data_p, "delay", ind = 1)
        if (nrow(df.c) != 0) {
          p3 <- p3 +
            geom_line(data = df.c %>%
                        filter(get('indice') == 1),
                      aes(
                        y = get('predicted_delay'),
                        col = get('delay_fragment')
                      ),
                      size = .4)
        }
        if (nrow(data_p %>%
                 filter(get('indice') == 1) %>%
                 filter(get('slope') == 0)) > 3) {
          p3 <- p3 +
            geom_line(
              data = data_p %>%
                filter(get('indice') == 1) %>%
                filter(get('slope') == 0),
              aes(
                y = get('delay_mean'),
                col = get('delay_fragment')
              ),
              size = .4
            )
        }
      }
      #plot those bins over 20 minutes
      if (nrow(df1.d %>%
               filter(get('delay') >= 20)) >= 1) {
        p3 <- p3 +
          geom_point(
            data = df1.d %>%
              filter(get('delay') >= 20),
            aes(y = Limit_df1),
            col = col_above20,
            shape = shape_above20,
            size = .5
          )
      }
      df1_wo <-
        data_p[grep(paste0("\\D_\\d+", "$"), data_p$delay_fragment), ]
      if (nrow(df1_wo) != 0) {
        df1_wo <- meanPosition(df1_wo, "delay_fragment")
        df1_wo <-
          velocity_fun(df1_wo,
                       minVelocity = minVelocity,
                       medianVelocity = medianVelocity)
        if (length(unique(na.omit(df1_wo$velocity))) != 0) {
          p3 <- p3 +
            geom_text(
              data = df1_wo,
              aes(
                x = get('meanPosi'),
                y = Limit - 1,
                label = get('velocity')
              ),
              size = 1.3,
              check_overlap = TRUE,
              color = 2
            ) +
            geom_text(
              data = df1_wo,
              aes(
                x = get('meanPosi'),
                y = 5,
                label = get('delay_fragment')
              ),
              size = 1.3,
              check_overlap = TRUE
            )
        }
      }
    }
    #########################Events plot positive strand#################
    #plot termination event from synthesis_ratio_event column
    forggtitle_ter <- 0
    forggtitle_NS <- 0
    df1_syR_T <- NA
    if (length(which(!is.na(data_p$synthesis_ratio))) != 0) {
      df1_syR <- data_p[which(!is.na(data_p$synthesis_ratio)), ]
      #in case last position matches with an event which needs to be
      #on the next page of the plot.
      if (last(df1_syR$position) == frag[c(i + 1)]) {
        fc_seg <-
          df1_syR[which(df1_syR$position ==
                          frag[c(i + 1)]), "FC_HL_intensity_fragment"]
        df1_syR[which(df1_syR$FC_HL_intensity_fragment == fc_seg),
                c("synthesis_ratio_event",
                  "p_value_Manova")] <- NA
      }
      if (length(which(
        df1_syR$synthesis_ratio < termination_threshold &
        !is.na(df1_syR$FC_HL_intensity_fragment)
      )) != 0) {
        df1_syR_T <-
          df1_syR[which(
            df1_syR$synthesis_ratio < termination_threshold &
              !is.na(df1_syR$FC_HL_intensity_fragment)
          ), ]
        df1_syR_T <-
          arrange_byGroup(df1_syR_T, "FC_HL_intensity_fragment")
        forggtitle_ter <- nrow(df1_syR_T)
      }
      df1_syR_T <- NA
      #plot New_start event from synthesis_ratio_event
      if (length(which(
        df1_syR$synthesis_ratio > iTSS_threshold &
        !is.na(df1_syR$FC_HL_intensity_fragment)
      )) != 0) {
        df1_syR_T <-
          df1_syR[which(
            df1_syR$synthesis_ratio > iTSS_threshold &
              !is.na(df1_syR$FC_HL_intensity_fragment)
          ), ]
        df1_syR_T <-
          arrange_byGroup(df1_syR_T, "FC_HL_intensity_fragment")
        forggtitle_NS <- nrow(df1_syR_T)
      }
    }
    ####################pausing site positive strand##############
    #plot pausing sites events
    if (nrow(data_p %>%
             filter(get('pausing_site') == "+")) != 0) {
      #select pausing site
      df1_ps <- data_p %>%
        filter(get('pausing_site') == "+")
      #select pausing site duration
      df1_ps <-
        df1_ps %>%
        filter(na.omit(get('event_duration')) >= event_duration_ps)
      if (nrow(df1_ps %>%
               filter(get('event_ps_itss_p_value_Ttest')
                      < p_value_event)) != 0) {
        df1_ps_s <-
          df1_ps %>%
          filter(get('event_ps_itss_p_value_Ttest')
                 < p_value_event)
        p3 <-
          my_segment_T(
            p3,
            data = df1_ps_s,
            "PS*",
            y = 0,
            yend = 3,
            dis = 50,
            ytext = 3.8,
            color = "orange",
            linetype = "dashed",
            df = "pausing",
            fontface = fontface
          )
      }
      if (nrow(df1_ps %>%
               filter(get('event_ps_itss_p_value_Ttest')
                      > p_value_event)) != 0) {
        df1_ps_b <-
          df1_ps %>%
          filter(get('event_ps_itss_p_value_Ttest')
                 > p_value_event)
        p3 <-
          my_segment_T(
            p3,
            data = df1_ps_b,
            "PS",
            y = 0,
            yend = 3,
            dis = 50,
            ytext = 3.8,
            color = "orange",
            linetype = "dashed",
            df = "pausing",
            fontface = fontface
          )
      }
      if (nrow(df1_ps %>%
               filter(is.na(get(
                 'event_ps_itss_p_value_Ttest'
               )))) != 0) {
        df1_ps_s <-
          df1_ps[which(is.na(df1_ps$event_ps_itss_p_value_Ttest)), ]
        p3 <-
          my_segment_T(
            p3,
            data = df1_ps_s,
            "PS",
            y = 0,
            yend = 3,
            dis = 50,
            ytext = 3.8,
            color = "orange",
            linetype = "dashed",
            df = "pausing",
            fontface = fontface
          )
      }
    }
    ####################iTSS_I positive strand###################
    #plot internal starting sites events
    if (nrow(data_p %>%
             filter(get('iTSS_I') == "+")) != 0) {
      #select iTSS
      df1_itss <- data_p %>%
        filter(get('iTSS_I') == "+")
      #select iTSS duration
      df1_itss <-
        df1_itss %>%
        filter(na.omit(get('event_duration'))
               <= event_duration_itss)
      if (nrow(df1_itss %>%
               filter(get('event_ps_itss_p_value_Ttest')
                      < p_value_event)) != 0) {
        df1_itss_s <-
          df1_itss %>%
          filter(get('event_ps_itss_p_value_Ttest')
                 < p_value_event)
        p3 <-
          my_segment_NS(
            p3,
            data = df1_itss_s,
            "iTSS*",
            y = 0,
            yend = 3.2,
            dis = 10,
            ytext = 3.6,
            color = 4,
            linetype = "dotted",
            fontface = fontface
          )
      }
      if (nrow(df1_itss %>%
               filter(get('event_ps_itss_p_value_Ttest')
                      > p_value_event)) != 0) {
        df1_itss_b <-
          df1_itss %>%
          filter(get('event_ps_itss_p_value_Ttest')
                 > p_value_event)
        p3 <-
          my_segment_NS(
            p3,
            data = df1_itss_b,
            "iTSS",
            y = 0,
            yend = 3.2,
            dis = 10,
            ytext = 3.6,
            color = 4,
            linetype = "dotted",
            fontface = fontface
          )
      }
      if (nrow(df1_itss %>%
               filter(is.na('event_ps_itss_p_value_Ttest'))) != 0) {
        df1_itss_b <-
          df1_itss[which(is.na(df1_itss$event_ps_itss_p_value_Ttest)), ]
        
        p3 <-
          my_segment_NS(
            p3,
            data = df1_itss_b,
            "iTSS",
            y = 0,
            yend = 3.2,
            dis = 10,
            ytext = 3.6,
            color = 4,
            linetype = "dotted",
            fontface = fontface
          )
      }
    }
    ####################FC positive strand###################
    #add FC for intensity ratio test if p_value is significant
    #select the last row for each segment and add 40 nucleotides in case
    #of negative strand for a nice plot
    data_p <- indice_function(data_p, "intensity_fragment")
    df1_wo <- data_p[which(data_p$indice == 1), ]
    #select the last row for each segment and add 40 nucleotides in case
    #of negative strand for a nice plot
    df1_wo_pvalue <-
      arrange_byGroup(df1_wo, "p_value_intensity")
    if (nrow(df1_wo_pvalue) != 0) {
      df1_p_val_int <-
        df1_wo_pvalue[which(df1_wo_pvalue$p_value_intensity
                            < p_value_int), ]
      if (nrow(df1_p_val_int) != 0) {
        p1 <- p1 +
          geom_text(
            data = df1_p_val_int,
            aes(
              x = get('position'),
              y = get('intensity_mean_fragment')
            ),
            label = "FC*",
            fontface = fontface,
            size = 1,
            check_overlap = TRUE
          )
      }
      df1_p_val_int <-
        df1_wo_pvalue[which(df1_wo_pvalue$p_value_intensity
                            > p_value_int), ]
      if (nrow(df1_p_val_int) != 0) {
        p1 <- p1 +
          geom_text(
            data = df1_p_val_int,
            aes(
              x = get('position'),
              y = get('intensity_mean_fragment')
            ),
            label = "FC",
            fontface = fontface,
            size = 1,
            check_overlap = TRUE
          )
      }
    }
    #add FC for HL ratio lower than HL_threshold upon p_value significance
    data_p <- indice_function(data_p, "HL_fragment")
    df1_wo <- data_p[which(data_p$indice == 1), ]
    df1_hl <- arrange_byGroup(data_p, "FC_HL")
    df1_p_val_hl <-
      df1_hl[which(df1_hl$FC_HL >= HL_threshold_1), ]
    if (nrow(df1_p_val_hl) != 0) {
      df1_p_val_hl_p1 <-
        df1_p_val_hl[which(df1_p_val_hl$p_value_HL <= p_value_hl), ]
      if (nrow(df1_p_val_hl_p1) != 0) {
        p2 <- my_segment_NS(
          p2,
          data = df1_p_val_hl_p1,
          "HL*",
          y = 0,
          yend = 3,
          dis = 10,
          ytext = 3.4,
          color = HL_threshold_color,
          linetype = "dashed",
          fontface = fontface
        )
      }
      df1_p_val_hl_p2 <-
        df1_p_val_hl[which(df1_p_val_hl$p_value_HL > p_value_hl), ]
      if (nrow(df1_p_val_hl_p2) != 0) {
        p2 <- my_segment_NS(
          p2,
          data = df1_p_val_hl_p2,
          "HL",
          y = 0,
          yend = 3,
          dis = 10,
          ytext = 3.4,
          color = HL_threshold_color,
          linetype = "dashed",
          fontface = fontface
        )
      }
    }
    #add FC for HL ratio higher than HL_threshold upon p_value significance
    df1_p_val_hl <-
      df1_hl[which(df1_hl$FC_HL <= HL_threshold_2), ]
    if (nrow(df1_p_val_hl) != 0) {
      df1_p_val_hl_p1 <-
        df1_p_val_hl[which(df1_p_val_hl$p_value_HL <= p_value_hl), ]
      if (nrow(df1_p_val_hl_p1) != 0) {
        p2 <- my_segment_NS(
          p2,
          data = df1_p_val_hl_p1,
          "HL*",
          y = 0,
          yend = 3,
          dis = 10,
          ytext = 3.4,
          color = HL_threshold_color,
          linetype = "dashed",
          fontface = fontface
        )
      }
      df1_p_val_hl_p2 <-
        df1_p_val_hl[which(df1_p_val_hl$p_value_HL > p_value_hl), ]
      if (nrow(df1_p_val_hl_p2) != 0) {
        p2 <- my_segment_NS(
          p2,
          data = df1_p_val_hl_p2,
          "HL",
          y = 0,
          yend = 3,
          dis = 10,
          ytext = 3.4,
          color = HL_threshold_color,
          linetype = "dashed",
          fontface = fontface
        )
      }
    }
    df1_p_val_hl <-
      df1_hl[which(df1_hl$FC_HL > HL_threshold_2 &
                     df1_hl$FC_HL < HL_threshold_1), ]
    if (nrow(df1_p_val_hl) != 0) {
      df1_p_val_hl_p <-
        df1_p_val_hl[which(df1_p_val_hl$p_value_HL <= p_value_hl), ]
      if (nrow(df1_p_val_hl_p) != 0) {
        p2 <- my_segment_NS(
          p2,
          data = df1_p_val_hl_p,
          "HL*",
          y = 0,
          yend = 3,
          dis = 10,
          ytext = 3.4,
          color = HL_threshold_color,
          linetype = "dashed",
          fontface = fontface
        )
      }
    }
    
    #Select rows with velocity_ratio event and draw a line
    df1_v <- data_p[!duplicated(data_p$velocity_ratio),]
    df1_v <-
      df1_v[which(df1_v$velocity_ratio < vel_threshold),]
    if (nrow(df1_v) != 0) {
      p3 <-
        my_segment_NS(
          p3,
          data = df1_v,
          "V",
          y = 0,
          yend = 3,
          dis = 10,
          ytext = 3.4,
          color = vel_threshold_color,
          linetype = "dashed",
          fontface = fontface
        )
    }
    ##########################title positive strand#######################
    if (i == 1) {
      p1 <- p1 +
        ggtitle(
          paste0(
            "ID: ",
            df1_1$ID[1],
            "-",
            last(df1_1$ID),
            "; ",
            "FC*: ",
            "significant t-test of two consecutive segments",
            ";
                       Term: termination (",
            forggtitle_ter,
            "), NS: new start (",
            forggtitle_NS,
            "), PS: pausing site (",
            length(which(data_p$pausing_site == "+")),
            "), iTSS_I: internal starting site (",
            length(which(data_p$iTSS_I == "+")),
            "), (*): p_value below 0.05; ",
            "TI: transcription interferance."
          )
        ) +
        theme(plot.title = element_text(size = 6, hjust = .5))
    } else{
      p1 <- p1 +
        ggtitle(
          paste0(
            "ID: ",
            df1_1$ID[1],
            "-",
            last(df1_1$ID),
            "; Term: termination (",
            forggtitle_ter,
            "), NS: new start (",
            forggtitle_NS,
            "), PS: pausing site (",
            length(which(data_p$pausing_site == "+")),
            "), iTSS_I: internal starting site (",
            length(which(data_p$iTSS_I == "+")),
            ")"
          )
        ) +
        theme(plot.title = element_text(size = 6, hjust = .5))
    }
    p <- list(p1, p2, p3)
    return(p)
  }
CyanolabFreiburg/rifi documentation built on May 7, 2023, 7:53 p.m.