R/viewPoints.R

Defines functions .makeRelativeVP plotAvgViewpoint plotViewpoint viewPoint

Documented in plotAvgViewpoint plotViewpoint viewPoint

#' Virtual 4C viewpoint
#'
#' This function creates a GInteractions object representing interactions 
#' originating at a given viewpoint ('bait'), or set of viewpoints. This is 
#' similar to the idea of a virtual 4C experiment where you are interested in 
#' interactions with a specific region. 
#' 
#' The object returned has the 'bait' as anchor one, and the interacting regions 
#' as anchor two. By default this is genome wide. If you only want to consider 
#' interactions within a certain distance around the bait, you can specify a 
#' region to consider.
#' 
#' Multiple baits can be given, e.g. to find all interactions around promoters.
#' 
#' You may want to visualise the resulting interactions in a genome browser - 
#' you can do this by creating coverage over anchor two of the object and exporting 
#' as a wig or bedgraph file.
#' 
#' 
#' @param x A GInteractions object.
#' @param bait A GRanges object describing bait regions.
#' @param region If present, a GRanges object specifying the
#'               region to look for bait interactions in.
#' @param ... additional arguments to findoverlaps
#' 
#' @return A GInteractions object.
#' 
#' @import GenomicRanges
#' @export
#' @examples
#' data(hic_example_data)
#' library(GenomicRanges)
#' pos <- GRanges(seqnames='chr15', ranges=IRanges(start=59477709, end=59482708))
#' region <- GRanges(seqnames='chr15', ranges=IRanges(start=58980209, end=59980208))
#' vp <- viewPoint(hic_example_data, pos, region)
viewPoint <- function(x, bait, region = NULL, ...) {
    hits <- list()
    hits$one <- findOverlaps(x, bait, use.region = "first")
    hits$two <- findOverlaps(x, bait, use.region = "second")
    if (length(hits) == 0) 
        return(GenomicInteractions())
    vp <- GenomicInteractions(anchor1 = bait[c(subjectHits(hits$one), subjectHits(hits$two))], anchor2 = c(anchorTwo(x)[queryHits(hits$one)], 
        anchorOne(x)[queryHits(hits$two)]), counts = c(interactionCounts(x)[queryHits(hits$one)], interactionCounts(x)[queryHits(hits$two)]))
    if (!is.null(region)) {
        vp <- vp[overlapsAny(anchorTwo(vp), region, ...)]
    }
    ord <- order(vp)
    return(unique(vp[ord]))
}

#' Plot coverage around a virtual 4C viewpoint
#' 
#' Plots coverage of interactions around a given viewpoint. This function requires 
#' the output of `viewPoint()` as input. You should additionally specify the total 
#' region you wish to plot. 
#'
#' @param x a GInteractions object which is output from viewPoint
#' @param region The genomic region to plot
#' @param ylab Y axis label.
#' @param xlab X axis label. By default this is the chromosome of the region 
#' that is being plotted.
#' @param ... additional arguments to plot
#' 
#' @return Coverage that is plotted (invisibly)
#'
#' @examples
#' data(hic_example_data)
#' library(GenomicRanges)
#' pos <- GRanges(seqnames='chr15', ranges=IRanges(start=59477709, end=59482708))
#' region <- GRanges(seqnames='chr15', ranges=IRanges(start=58980209, end=59980208))
#' vp <- viewPoint(hic_example_data, pos, region)
#' plotViewpoint(vp, region)
#'
#' @import GenomicRanges
#' @importFrom graphics plot
#' @export
#' 
plotViewpoint <- function(x, region, ylab = "Signal", xlab = NULL, ...) {
    if (length(region) > 1) 
        stop("region must be a single range")
    x <- x[overlapsAny(anchorTwo(x), region, type = "within")]
    cov <- as(coverage(anchorTwo(x), weight = interactionCounts(x))[region], "GRanges")
    points_x <- c(start(cov), end(cov)) + start(region)
    points_y <- rep.int(cov$score, 2)
    ord <- order(points_x)
    
    if (is.null(xlab)) {
        xlab <- as.character(seqnames(region))
    }
    
    plot(points_x[ord], points_y[ord], t = "l", ylab = ylab, xlab = xlab, ...)
    
    return(invisible(coverage(cov, weight = "score")))
}

#' Plot coverage around a set of virtual 4C viewpoints
#' 
#' Plots summarised coverage of interactions around a set of viewpoints, 
#' e.g. promoters. This function requires the output of `viewPoint()` as input. 
#'
#' @param x A GInteractions object which is output from viewPoint
#' @param left_dist Distance 'left' of interactions to consider, in bp.
#' @param right_dist Distance 'right' of interactions to consider, in bp.
#' @param fix One of 'center', 'start', 'end'. Passed to `resize`. Interaction 
#' distances are calculated relative to this part of the bait. 
#' @param ylab Y axis label.
#' @param xlab X axis label. 
#' @param ... additional arguments to plot
#' 
#' @return  Coverage that is plotted (invisibly)
#'
#' @examples
#' data(hic_example_data)
#' library(GenomicRanges)
#' pos <- GRanges(seqnames='chr15', ranges=IRanges(start=59477709, end=59482708))
#' region <- GRanges(seqnames='chr15', ranges=IRanges(start=58980209, end=59980208))
#' vp <- viewPoint(hic_example_data, pos, region)
#' plotAvgViewpoint(vp, left_dist = 1000000, right_dist = 100000)
#' @import GenomicRanges
#' @importFrom S4Vectors runValue
#' @export
plotAvgViewpoint <- function(x, left_dist = 100000, right_dist = 100000, ylab = "Average signal", xlab = "Relative position", fix = "center", 
    ...) {
    
    cov <- .makeRelativeVP(x, fix = fix, left_dist = left_dist, right_dist = right_dist)
    
    points_x <- c(start(cov), end(cov)) - left_dist
    points_y <- rep.int(runValue(cov), 2)
    ord <- order(points_x)
    
    p <- plot(points_x[ord], points_y[ord], t = "l", ylab = ylab, xlab = xlab, ...)
    
    return(invisible(cov))
}

.makeRelativeVP <- function(GIObject, fix = "center", left_dist = 100000, right_dist = 100000) {
    # make ranges relative to bait
    bait <- resize(anchorOne(GIObject), width = 1, fix = fix)
    ints <- ranges(anchorTwo(GIObject))
    ints <- GenomicRanges::shift(ints, shift = -(start(bait)))
    ints <- GenomicRanges::shift(ints, shift = left_dist)
    
    # make coverage and adjust to mean coverage per bait
    cov <- coverage(ints, weight = interactionCounts(GIObject), width = right_dist + left_dist)
    cov <- cov/length(unique(bait))
    
    return(cov)
    # get points to plot
    
}
ComputationalRegulatoryGenomicsICL/GenomicInteractions-new documentation built on April 10, 2022, 5:39 p.m.