R/processing.R

Defines functions get_binom_ligation_threshold get_self_ligation_threshold sameStrand removeDups

Documented in get_binom_ligation_threshold get_self_ligation_threshold removeDups sameStrand

#' Summarise interactions between defined anchors
#'
#' Calculate the number of of paired-end reads mapping between a defined set of
#' anchors. This function will ignore counts present in the input data.
#'
#' @return A GInteractions object with annotated counts between anchors
#' @docType methods
#' @rdname countsBetweenAnchors-methods
#' @export
setGeneric("countsBetweenAnchors", function(x, y, ...) {
    standardGeneric("countsBetweenAnchors")
})

#' @param x A GInteractions object
#' @param y A GenomicRanges object
#' @param ignore_overlaps Allow overlapping anchors. Use this when you have
#'   overlapping anchors but be careful with multi-mapping. The 'within' option
#'   can help with this.
#' @param ... Extra parameters to pass to findOverlaps
#' @rdname countsBetweenAnchors-methods
#' @docType methods
#'
#' @importFrom IRanges overlapsAny
#' @export
setMethod("countsBetweenAnchors", list("GInteractions", "GRanges"), function(x, y, ignore_overlaps = FALSE, ...) {
    # check anchors are unique
    if (ignore_overlaps == FALSE && any(countOverlaps(y, y) > 1)) {
        stop("anchors are not unique")
    }
    
    # this can probably be more efficient! to do: rewrite
    one <- overlapsAny(anchorOne(x), y, ...)
    two <- overlapsAny(anchorTwo(x), y, ...)
    x.valid <- x[one & two]
    hits <- list()
    hits$one <- findOverlaps(anchorOne(x.valid), y, select = "first")
    hits$two <- findOverlaps(anchorTwo(x.valid), y, select = "first")  # select produces matrix not Hits
    interactions <- paste(hits[[1]], hits[[2]], sep = ":")
    tabulated <- table(interactions)
    
    pairs_list <- strsplit(names(tabulated), ":")
    pairs_one <- vapply(pairs_list, function(x) as.integer(x[1]), FUN.VALUE = integer(1))
    pairs_two <- vapply(pairs_list, function(x) as.integer(x[2]), FUN.VALUE = integer(1))
    
    anchor_one <- y[pairs_one]
    anchor_two <- y[pairs_two]
    counts <- as.integer(tabulated)
    
    final_counts <- GenomicInteractions(anchor1 = anchor_one, anchor2 = anchor_two, counts = counts)
    
    return(sort(final_counts))
})

#' Remove all but one occurences of a duplicated interaction
#'
#' Removes all but the first occurence of a duplicated interaction (defined as
#' having identical coordinates for both anchors). N.B. this does not summarise
#' the total counts of all the duplicates. It is designed for removing potential
#' PCR duplicates after reading in .bam files.
#'
#' @param GIObject A GInteractions object.
#' @return A GInteractions object that is a subset of the input object.
#' @export

removeDups <- function(GIObject) {
    if (any(interactionCounts(GIObject) != 1)) {
        warning("Some interactions have counts > 1: has the data already been summarised?\n", "Will return first occurence of any duplicates not considering interactionCounts().")
    }
    idx <- which(!duplicated(GIObject))
    reads_removed <- length(GIObject) - length(idx)
    percent_removed <- signif(100 * reads_removed/length(GIObject), 3)
    message(paste0("Removing ", reads_removed, " duplicate PETs (", percent_removed, "%)"))
    return(GIObject[idx])
}

#' Tests whether anchors have the same strand.
#'
#' This is designed for processing .bam files.
#'
#' @param GIObject A GInteractions object
#' @return A logical vector denoting with TRUE if both anchors of an interaction
#'  are on the same strand and FALSE otherwise.
sameStrand <- function(GIObject) {
    return(strand(regions(GIObject)[GIObject@anchor1]) == strand(regions(GIObject)[GIObject@anchor2]))
}

#' Get self ligation threshold with SD method from Heidari et al
#'
#' This function calculates a self ligation threshold according to the method
#' published in Heidari et al., Genome Research, 2014. Briefly, paired reads are
#' divided into in evenly sized bins. For each bin, the log2 ratio of reads that
#' are aligned to opposite strand vs to the same strand is calculated. Twice the
#' standard deviation of this ratio at high distances is used a cutoff to
#' determine which bins are likely to contain mostly self-liagted reads.
#'
#' @param GIObject a GInteractions object of paired end reads
#' @param bins Number of evenly sized bins to use.
#' @param distance_th The threshold, in base pairs, to use as a cutoff to pick
#'   which bins to use to determine the standard deviation.
#' @param plot TRUE by default. Whether to plot the log2ratio of opposite to
#'   same strand reads vs distance.
#'
#' @importFrom dplyr mutate_ group_by_ n summarise_
#' @import ggplot2
#' @export
#' @return The cutoff in base pairs below which an interaction is likely to be a
#'   self ligation.

get_self_ligation_threshold <- function(GIObject, bins = 100, distance_th = 400000, plot = TRUE) {
    # get df
    stranded_df <- data.frame(Distance = calculateDistances(GIObject), SameStrand = sameStrand(GIObject))
    stranded_cis_df <- stranded_df[complete.cases(stranded_df), ]
    stranded_cis_df <- stranded_cis_df[order(stranded_cis_df$Distance), ]
    
    # bin data
    bin_n <- nrow(stranded_cis_df)/bins
    
    cuts <- seq_len(bins) * bin_n
    breaks <- stranded_cis_df$Distance[cuts]
    
    stranded_cis_df$Bin <- as.numeric(as.character(cut(stranded_cis_df$Distance, breaks = c(0, breaks), labels = seq_along(breaks) - 1, 
        include.lowest = TRUE)))
    byBin <- group_by_(stranded_cis_df, "Bin")
    
    # summarise by bin
    sum_byBin <- summarise_(byBin, Total = quote(n()), SameStrand = quote(sum(SameStrand)))
    sum_byBin <- mutate_(sum_byBin, OppStrand = quote(Total - SameStrand), log2Ratio = quote(log2((OppStrand + 1)/(SameStrand + 1))))  #pseudocount to avoid NaN errors
    sum_byBin <- mutate_(sum_byBin, OppPercent = quote(100 * OppStrand/Total), SamePercent = quote(100 * SameStrand/Total))
    
    # get cutoff of log2ratio
    
    longrange_mean_log2 <- mean(sum_byBin$log2Ratio[sum_byBin$Bin > distance_th])
    
    longrange_sd_log2 <- sd(sum_byBin$log2Ratio[sum_byBin$Bin > distance_th])
    
    lower <- longrange_mean_log2 - 2 * longrange_sd_log2
    upper <- longrange_mean_log2 + 2 * longrange_sd_log2
    bp_cutoff <- min(sum_byBin[sum_byBin$log2Ratio > lower & sum_byBin$log2Ratio < upper, "Bin"])
    
    if (plot) {
        print(ggplot(sum_byBin, aes_string(x = "Bin", y = "log2Ratio")) + geom_line() + geom_point() + geom_hline(aes_string(yintercept = lower)) + 
            geom_hline(aes_string(yintercept = upper)) + coord_cartesian(xlim = c(0, 20000)) + geom_vline(xintercept = bp_cutoff, linetype = "dashed") + 
            xlab("Distance (bp)") + ylab("log2 ratio opposite strand pairs / same strand pairs"))
    }
    return(bp_cutoff)
}

#' get self ligation threshold with binomial test
#' 
#' This function calculates a self ligation threshold according to 
#' a method based on that of Heidari et al., Genome Research, 2014. 
#' Briefly, paired reads are divided into in evenly spaced bins. For
#' each bin, the number of reads that are aligned to opposite strand
#' vs to the same strand is calculated. A binomial test is used to test
#' if this is significantly different from the 50:50 ratio expected by 
#' chance if all reads are real interactions. 
#' 
#' @param GIObject a GInteractions object of paired end reads
#' @param bin.size Bin size in base pairs.
#' @param max.distance The maximum distance to consider between reads. 
#' Reads further apart than this distance should be very unlikely to be
#'  self ligations.
#' @param p.cutoff P value cut off for a significant difference from 50:50. Default: 0.05
#' @param adjust Method to use to adjust p values. Default: fdr. See `help(p.adjust)` for 
#' accepted values. Can also be NA for no adjustment.
#' @param plot TRUE by default. Whether to plot the percentage of reads 
#' on opposite strands vs difference and the binomial test p value vs distance.
#' @importFrom stats binom.test complete.cases p.adjust sd
#' @export
#' @return The cutoff in base pairs below which an interaction is likely to be a self ligation.


get_binom_ligation_threshold <- function(GIObject, max.distance = 20000, bin.size = 500, p.cutoff = 0.05, adjust = "fdr", plot = TRUE) {
    
    # make data frame
    stranded_df <- data.frame(Distance = calculateDistances(GIObject), SameStrand = sameStrand(GIObject))
    stranded_cis_df <- stranded_df[complete.cases(stranded_df), ]
    stranded_cis_df <- stranded_cis_df[order(stranded_cis_df$Distance), ]
    stranded_cis_df <- stranded_cis_df[stranded_cis_df$Distance < max.distance, ]
    
    # bin data
    bins <- cut(stranded_cis_df$Distance, breaks = seq(0, max.distance, by = bin.size), include.lowest = TRUE)
    stranded_cis_df$Bin <- bins
    byBin <- group_by_(stranded_cis_df, "Bin")
    sum_byBin <- summarise_(byBin, Total = quote(n()), SameStrand = quote(sum(SameStrand)))
    
    # get and adjust p values
    sum_byBin$p.value <- vapply(seq_len(nrow(sum_byBin)), function(x) {
        binom.test(sum_byBin$SameStrand[x], sum_byBin$Total[x])$p.value
    }, FUN.VALUE = numeric(1))
    
    if (!is.na(adjust)) {
        sum_byBin$p.value <- p.adjust(sum_byBin$p.value, method = adjust)
    }
    
    # get cutoff
    bp_cutoff <- seq(0, max.distance, by = bin.size)[min(which(sum_byBin$p.value > p.cutoff))]
    
    if (plot) {
        # data for plotting
        sum_byBin <- mutate_(sum_byBin, OppStrand = quote(Total - SameStrand), OppPercent = quote(100 * OppStrand/Total))
        sum_byBin$Bin <- bin.size * as.numeric((sum_byBin$Bin))
        
        # plot % opposite strand reads and cutoff
        print(ggplot(sum_byBin, aes_string(x = "Bin", y = "OppPercent")) + geom_line() + geom_point() + coord_cartesian(xlim = c(0, max.distance)) + 
            geom_vline(xintercept = bp_cutoff, linetype = "dashed") + ylab("Opposite Strand Percentage"))
        # plot p values, p value cutoff and distance cutoff
        print(ggplot(sum_byBin, aes_string(x = "Bin", y = "p.value")) + geom_line() + geom_point() + coord_cartesian(xlim = c(0, max.distance)) + 
            geom_hline(xintercept = p.cutoff, linetype = "dashed") + geom_vline(xintercept = bp_cutoff, linetype = "dashed") + ylab("p value") + 
            xlab("Distance (bp)"))
    }
    # return distance cutoff
    return(bp_cutoff)
}
ComputationalRegulatoryGenomicsICL/GenomicInteractions-new documentation built on April 10, 2022, 5:39 p.m.