context("normMethods.R")
data("example_design")
data("example_data_only_values")
# Subset the data to only look at first three conditions
test_design <- example_design[example_design$group %in% c("1", "2", "3"), ]
test_data <- example_data_only_values[, as.character(test_design$sample)]
# Remove rows with only NA-values
test_data <- test_data[rowSums(is.na(test_data)) != ncol(test_data), ]
test_that("globalIntensityNormalization", {
expect_dim <- c(98, 9)
expect_colsum <- c(
2481.86278, 2420.0029, 2493.85063,
2464.60255, 2422.10488, 2473.12488,
2516.12334, 2432.26214, 2390.14505
)
out <- globalIntensityNormalization(test_data)
out_dim <- dim(out)
out_colsum <- round(colSums(out, na.rm=TRUE), 5)
expect_true(
all.equal(
expect_dim,
out_dim
)
)
expect_true(
all(
expect_colsum == out_colsum
)
)
})
test_that("medianNormalization", {
expect_dim <- c(98, 9)
expect_colsum <- c(
2476.44406, 2416.74862, 2514.76548,
2480.75296, 2421.68804, 2460.60737,
2515.09438, 2403.50676, 2382.08166
)
out <- medianNormalization(test_data)
out_dim <- dim(out)
out_colsum <- round(colSums(out, na.rm=TRUE), 5)
expect_true(
all.equal(
expect_dim,
out_dim
)
)
expect_true(
all(
expect_colsum == out_colsum
)
)
})
test_that("meanNormalization", {
expect_dim <- c(98, 9)
expect_colsum <- c(
2480.02877, 2415.35575, 2493.44705,
2462.76854, 2417.45773, 2471.29087,
2517.16589, 2427.61499, 2384.11555
)
out <- meanNormalization(test_data)
out_dim <- dim(out)
out_colsum <- round(colSums(out, na.rm=TRUE), 5)
expect_true(
all.equal(
expect_dim,
out_dim
)
)
expect_true(
all(
expect_colsum == out_colsum
)
)
})
test_that("performVSNNormalization", {
expect_dim <- c(98, 9)
expect_colsum <- c(
2470.56447, 2407.87325, 2496.00488,
2461.14702, 2421.64088, 2477.71483,
2520.74195, 2413.61712, 2397.58554
)
out <- performVSNNormalization(test_data)
out_dim <- dim(out)
out_colsum <- round(colSums(out, na.rm=TRUE), 5)
expect_true(
all.equal(
expect_dim,
out_dim
)
)
expect_true(
all(
expect_colsum == out_colsum
)
)
})
test_that("performQuantileNormalization", {
expect_dim <- c(98, 9)
expect_colsum <- c(
2469.98486, 2415.69332, 2497.12467,
2469.98486, 2415.69332, 2469.98486,
2524.27466, 2415.69332, 2388.56021
)
out <- performQuantileNormalization(test_data)
out_dim <- dim(out)
out_colsum <- round(colSums(out, na.rm=TRUE), 5)
expect_true(
all.equal(
expect_dim,
out_dim
)
)
expect_true(
all(
expect_colsum == out_colsum
)
)
})
test_that("performSMADNormalization", {
expect_dim <- c(98, 9)
expect_colsum <- c(
2474.668, 2417.49851, 2507.3658,
2476.69406, 2419.97969, 2466.17639,
2520.90251, 2411.10946, 2386.40614
)
out <- performSMADNormalization(test_data)
out_dim <- dim(out)
out_colsum <- round(colSums(out, na.rm=TRUE), 5)
expect_true(
all.equal(
expect_dim,
out_dim
)
)
expect_true(
all(
expect_colsum == out_colsum
)
)
})
test_that("performCyclicLoessNormalization", {
expect_dim <- c(98, 9)
expect_colsum <- c(
2478.31304, 2410.73689, 2494.80824,
2454.38212, 2418.7555, 2471.09178,
2510.40413, 2402.29372, 2389.24695
)
out <- performCyclicLoessNormalization(test_data)
out_dim <- dim(out)
out_colsum <- round(colSums(out, na.rm=TRUE), 5)
expect_true(
all.equal(
expect_dim,
out_dim
)
)
expect_true(
all(
expect_colsum == out_colsum
)
)
})
test_that("performGlobalRLRNormalization", {
expect_dim <- c(98, 9)
expect_colsum <- c(
2481.46193, 2416.7949, 2499.26657,
2461.07399, 2424.5646, 2474.91485,
2517.3423, 2408.12205, 2393.68206
)
out <- performGlobalRLRNormalization(test_data)
out_dim <- dim(out)
out_colsum <- round(colSums(out, na.rm=TRUE), 5)
expect_true(
all.equal(
expect_dim,
out_dim
)
)
expect_true(
all(
expect_colsum == out_colsum
)
)
})
test_that("performNoNormalization", {
expect_dim <- c(98, 9)
expect_colsum <- c(
35539172278, 35144510958, 36832468728,
36954497268, 38286168846, 38114456004,
37366276438, 30257069174, 37091357660
)
out <- performNoNormalization(test_data)
out_dim <- dim(out)
out_colsum <- round(colSums(out, na.rm=TRUE), 5)
expect_true(
all.equal(
expect_dim,
out_dim
)
)
expect_true(
all(
expect_colsum == out_colsum
)
)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.