context("analyzeResults.R")
data("example_data_only_values")
data("example_design")
test_design <- example_design[example_design$group %in% c("1", "2", "3"), ]
test_data <- example_data_only_values[, as.character(test_design$sample)]
group_header <- test_design$group
unique_groups <- unique(group_header)
# Setup equivalent to regression_test_nr
data("example_wide_data")
data("example_wide_design")
sdf <- example_wide_data[, example_wide_design$sample]
adf <- example_wide_data[, !colnames(example_wide_data) %in% example_wide_design$sample]
se <- SummarizedExperiment::SummarizedExperiment(
assays = list(raw=as.matrix(sdf)),
colData=example_wide_design,
rowData=adf
)
SummarizedExperiment::metadata(se) <- list(
sample="sample",
group="group"
)
nds <- NormalyzerDE::getVerifiedNormalyzerObject(
"unit_test_run_norm",
summarizedExp = se
)
regression_test_nr <- NormalyzerDE::normMethods(nds)
regression_test_nr <- NormalyzerDE::analyzeNormalizations(regression_test_nr)
regression_test_ner <- regression_test_nr@ner
#data("regression_test_nr")
#regression_test_ner <- ner(regression_test_nr)
#nds <- nds(regression_test_nr)
# browser()
sampleReplicateGroups <- sampleReplicateGroups(nds)
normMatrices <- normalizations(regression_test_nr)
anova_pvalues <- calculateANOVAPValues(
normMatrices,
sampleReplicateGroups,
categoricalANOVA=FALSE)
test_that("calculateCorrSum gives same Pearson output", {
expected_group_pearson <- c(
0.9890682, 0.9885302, 0.9972236,
0.9937719, 0.9976159, 0.9948526,
0.6108868, 0.9951509, 0.5691397
)
pear_out <- calculateCorrSum(test_data, group_header, unique_groups, "pearson")
expect_true(
all.equal(
expected_group_pearson,
round(pear_out, 7)
)
)
})
test_that("calculateCorrSum gives same Spearman output", {
expected_group_spearman <- c(
0.9234304, 0.9665739, 0.9497886,
0.9686747, 0.9551886, 0.9420609,
0.9250426, 0.9549601, 0.9315987
)
spear_out <- calculateCorrSum(test_data, group_header, unique_groups, "spearman")
expect_true(
all.equal(
expected_group_spearman,
round(spear_out, 7)
)
)
})
test_that("calculateSummarizedCorrelationVector_Spearman", {
# expected_out <- repCorSpear(regression_test_ner)
expected_out <- read.csv(system.file(package="NormalyzerDE", "testdata", "calculateSummarizedCorrelationVector_spearman.csv"), check.names = FALSE)
out <- calculateSummarizedCorrelationVector(
normMatrices,
sampleReplicateGroups,
unique(sampleReplicateGroups),
"spearman"
)
expect_true(
all.equal(
round(as.matrix(expected_out), 5),
round(out, 5)
)
)
})
test_that("calculateSummarizedCorrelationVector_Pearson", {
#expected_out <- repCorPear(regression_test_ner)
expected_out <- read.csv(system.file(package="NormalyzerDE", "testdata", "calculateSummarizedCorrelationVector_pearson.csv"), check.names = FALSE)
out <- as.matrix(unlist(calculateSummarizedCorrelationVector(
normMatrices,
sampleReplicateGroups,
unique(sampleReplicateGroups),
"pearson"
)))
expect_true(
all.equal(
round(as.matrix(expected_out), 5),
round(out, 5)
)
)
})
test_that("calculateReplicateCV", {
expected_out <- avgcvmem(regression_test_ner)
out <- calculateReplicateCV(normMatrices, sampleReplicateGroups)
expect_true(
all.equal(
expected_out,
out
)
)
})
test_that("calculateFeatureCV", {
expected_out <- featureCVPerMethod(regression_test_ner)
out <- calculateFeatureCV(normMatrices)
expect_true(
all.equal(
expected_out,
out
)
)
})
test_that("calculateAvgMadMem", {
expected_out <- avgmadmem(regression_test_ner)
out <- calculateAvgMadMem(normMatrices, sampleReplicateGroups)
expect_true(
all.equal(
expected_out,
out
)
)
})
test_that("calculateAvgReplicateVariation", {
expected_out <- avgvarmem(regression_test_ner)
out <- calculateAvgReplicateVariation(normMatrices, sampleReplicateGroups)
expect_true(
all.equal(
expected_out,
out
)
)
})
test_that("calculateANOVAPValues", {
# expected_out <- anovaP(regression_test_ner)
expected_out <- read.csv(system.file(package="NormalyzerDE", "testdata", "anova.csv"), check.names = FALSE)
anova_pvalues_copy <- anova_pvalues
expect_true(
all.equal(
round(as.matrix(expected_out), 4),
round(anova_pvalues_copy, 4)
)
)
})
test_that("findLowlyVariableFeaturesCVs", {
# expected_out <- lowVarFeaturesCVs(regression_test_ner)
expected_out <- c(
"log2" = 1.153562,
"VSN" = 1.089077,
"GI" = 1.159375,
"median" = 1.320822,
"mean" = 1.163794,
"Quantile" = 1.120080,
"CycLoess" = 1.032822,
"RLR" = 1.048589,
"RT-median" = 1.320822,
"RT-mean" = 1.163794,
"RT-Loess" = 1.032822,
"RT-VSN" = 1.089077
)
anova_pvalues_contrast_nonna <- !is.na(anova_pvalues[, 1])
log2AnovaFDR <- rep(NA, length(anova_pvalues_contrast_nonna))
log2AnovaFDR[anova_pvalues_contrast_nonna] <- stats::p.adjust(
anova_pvalues[, 1][anova_pvalues_contrast_nonna],
method="BH")
out <- findLowlyVariableFeaturesCVs(log2AnovaFDR, normMatrices)
expect_true(
all.equal(
round(expected_out, 6),
round(out, 6)
)
)
})
test_that("calculatePercentageAvgDiffInMat_small_test", {
test_mat <- data.frame(c(1,3), c(1,5), c(1,7))
expect_out <- c(100, 150, 200)
out <- calculatePercentageAvgDiffInMat(test_mat)
expect_true(
all.equal(
out,
expect_out
)
)
})
test_that("calculatePercentageAvgDiffInMat_MAD", {
expected_out <- avgmadmempdiff(regression_test_ner)
avgMadMemMat <- calculateAvgMadMem(normMatrices, sampleReplicateGroups)
out <- calculatePercentageAvgDiffInMat(avgMadMemMat)
expect_true(
all.equal(
expected_out,
out
)
)
})
test_that("calculatePercentageAvgDiffInMat_CV", {
expected_out <- avgcvmempdiff(regression_test_ner)
avgCVMat <- calculateReplicateCV(normMatrices, sampleReplicateGroups)
out <- calculatePercentageAvgDiffInMat(avgCVMat)
expect_true(
all.equal(
expected_out,
out
)
)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.