Description Usage Arguments Value See Also Examples
For each GSCA object of 'gscaList', this function will store the results from function analyzeGeneSetCollections in slot result, and update information about these results to slot summary of class GSCA.
1 2 3 4 5 6 7 8 9 | analyzeGscaTS(
gscaList,
para = list(pValueCutoff = 0.05, pAdjustMethod = "BH", nPermutations = 1000,
minGeneSetSize = 15, exponent = 1),
verbose = TRUE,
doGSOA = FALSE,
doGSEA = TRUE,
GSEA.by = "HTSanalyzeR2"
)
|
gscaList |
A named list of GSCA object generated by 'preprocessGscaTS'. |
para |
A list of parameters for GSEA and hypergeometric tests. Details please see
|
verbose |
a single logical value specifying to display detailed messages (when verbose=TRUE) or not (when verbose=FALSE), default is TRUE. |
doGSOA |
a single logical value specifying whether to perform gene set overrepresentation analysis (when doGSOA=TRUE) or not (when doGSOA=FALSE), default is FALSE. |
doGSEA |
a single logical value specifying whether to perform gene set enrichment analysis (when doGSEA=TRUE) or not (when doGSEA=FALSE), default is TRUE. |
GSEA.by |
A single character value to choose which algorithm to do GSEA. Valid value
could either be "HTSanalyzeR2"(default) or "fgsea". If performed by "fgsea", the result explanation
please refer to |
In the end, this function will return an updated list of GSCA object.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 | data(d7, d13, d25)
## generate expInfor to describe the information of time series data
expInfor <- matrix(c("d7", "d13", "d25"), nrow = 3, ncol = 2,
byrow = FALSE, dimnames = list(NULL, c("ID", "Description")))
## package phenotypeTS into a list of phenotypes
datalist <- list(d7, d13, d25)
phenotypeTS <- lapply(datalist, function(x) {
tmp <- as.vector(x$neg.lfc)
names(tmp) <- x$id
tmp})
## set up a list of gene set collections
library(org.Hs.eg.db)
library(GO.db)
GO_BP <- GOGeneSets(species="Hs", ontologies=c("BP"))
ListGSC <- list(GO_BP=GO_BP)
## package hitsTS if you also want to do GSOA, otherwise ignore it
hitsTS <- lapply(datalist, function(x){
tmp <- x[x$neg.p.value < 0.01, "id"]
tmp})
## create an object of class GSCABatch with hitsTS
gscaTS <- GSCABatch(expInfor = expInfor, phenotypeTS = phenotypeTS,
listOfGeneSetCollections = ListGSC, hitsTS = hitsTS)
## preprocess GSCABatch
gscaTS1 <- preprocessGscaTS(gscaTS, species="Hs", initialIDs="SYMBOL",
keepMultipleMappings=TRUE, duplicateRemoverMethod="max",
orderAbsValue=FALSE)
## support parallel calculation using doParallel package
if (requireNamespace("doParallel", quietly=TRUE)) {
doParallel::registerDoParallel(cores=2)
} else {
}
## Not run:
## do hypergeometric tests and GSEA
gscaTS2 <- analyzeGscaTS(gscaTS1, para=list(pValueCutoff=0.05, pAdjustMethod="BH",
nPermutations=100, minGeneSetSize=100,
exponent=1), doGSOA = TRUE, doGSEA = TRUE)
head(getResult(gscaTS2[[1]])$GSEA.results$GO_BP, 3)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.