#' Evaluate the score functions for the estimation of the feature parameters for a
#' single dataset
#' @inheritParams estFeatureParameters
#' @return A vector with evaluated score function
#'@param data,distribution,offSet,meanVarTrend,indepModel,compositional,paramEstsLower
#' Characteristics of the views
#' @param x the parameter estimates
#' @param latentVar the latent variables
#' @param mm the dimension
#' @param allowMissingness a boolean, should missing values be allowed
scoreFeatureParams = function(x, data, distribution, offSet, latentVar,
meanVarTrend, mm, indepModel, compositional,
paramEstsLower, allowMissingness, ...){
if(!compositional){
mu = buildMu(offSet, latentVar[,mm], x,
distribution)
if(allowMissingness){
isNA = is.na(data)
data[isNA] = mu[isNA]
}
}
if(distribution == "gaussian"){
latentVar[,mm] %*% (data - mu)
} else if(distribution == "quasi"){
if(compositional){
CompMat = buildCompMat(indepModel$colMat, rbind(paramEstsLower, x),
latentVar, m = mm, norm = TRUE, subtractMax = TRUE)
mu = CompMat*indepModel$libSizes
if(allowMissingness){
isNA = is.na(data)
data[isNA] = mu[isNA]
}
CompMatVar = CompMat/meanVarTrend(CompMat, outerProd = FALSE)
crossprod(latentVar[,mm],
(1-CompMat)*(data-mu)*CompMatVar)
} else {
latentVar[,mm] %*% prepareScoreMat(mu = mu, data = data,
meanVarTrend = meanVarTrend)
}
} else if(distribution == "binomial"){
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.