deriv2LagrangianFeatures: The score function to estimate the latent variables

View source: R/deriv2LagrangianFeatures.R

deriv2LagrangianFeaturesR Documentation

The score function to estimate the latent variables

Description

The score function to estimate the latent variables

Usage

deriv2LagrangianFeatures(
  x,
  data,
  distribution,
  offSet,
  latentVars,
  numVar,
  paramEstsLower,
  mm,
  Jac,
  meanVarTrend,
  weights,
  compositional,
  indepModel,
  ...
)

Arguments

x

parameter estimates

data

A list of data matrices

distribution, compositional, meanVarTrend, offSet, numVar

Characteristics of the view

latentVars

A vector of latent variables

paramEstsLower

lower dimension estimates

mm

the current dimension

Jac

a prefab jacobian

weights

The normalization weights

indepModel

the independence model

...

Additional arguments passed on to the score and jacobian functions

Value

A vector of length n, the evaluation of the score functions of the latent variables


CenterForStatistics-UGent/compIntegrate documentation built on Aug. 4, 2023, 1:08 p.m.