#' The score function to estimate the latent variables
#' @inheritParams estFeatureParameters
#' @param distribution,compositional,meanVarTrend,offSet,numVar
#' Characteristics of the view
#' @param x parameter estimates
#' @param paramEstsLower lower dimension estimates
#' @param indepModel the independence model
#' @param mm the current dimension
#' @param Jac a prefab jacobian
#'
#' @return A vector of length n, the evaluation of the score functions of the latent variables
deriv2LagrangianFeatures = function(x, data, distribution, offSet, latentVars,
numVar, paramEstsLower, mm, Jac,
meanVarTrend, weights, compositional,
indepModel,...){
Seq = seq_len(numVar)
Jac[Seq, numVar + 2] = Jac[numVar + 2, Seq] = 2*x[Seq]*weights
JacTmp = jacFeatures(data = data, distribution = distribution,
paramEsts = x[Seq], offSet = offSet,
latentVars = latentVars, meanVarTrend = meanVarTrend,
m = mm, compositional = compositional,
paramEstsLower = paramEstsLower, indepModel = indepModel, ...)
if(compositional){
Jac[Seq, Seq] = JacTmp
} else {
diag(Jac)[Seq] = JacTmp
}
diag(Jac)[Seq] = diag(Jac)[Seq] + 2*x[numVar+2]*weights
return(Jac)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.