View source: R/deriv2LagrangianFeatures.R
deriv2LagrangianFeatures | R Documentation |
The score function to estimate the latent variables
deriv2LagrangianFeatures(
x,
data,
distribution,
offSet,
latentVars,
numVar,
paramEstsLower,
mm,
Jac,
meanVarTrend,
weights,
compositional,
indepModel,
...
)
x |
parameter estimates |
data |
A list of data matrices |
distribution, compositional, meanVarTrend, offSet, numVar |
Characteristics of the view |
latentVars |
A vector of latent variables |
paramEstsLower |
lower dimension estimates |
mm |
the current dimension |
Jac |
a prefab jacobian |
weights |
The normalization weights |
indepModel |
the independence model |
... |
Additional arguments passed on to the score and jacobian functions |
A vector of length n, the evaluation of the score functions of the latent variables
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.