#' Make residual plots
#'
#' @param RCM an RCM object
#' @param Dim an integer, which dimension?
#' @param whichTaxa a character string or a character vector,
#' for which taxa to plot the diagnostic plots
#' @param resid the type of residuals to use, either 'Deviance' or 'Pearson'
#' @param numTaxa an integer, the number of taxa to plot
#' @param mfrow passed on to par().
#' If not supplied will be calculated based on numTaxa
#' @param samColour,samShape Vectors or character strings denoting
#' the sample colour and shape respectively. If character string is provided,
#' the variables with this name is extracted from the phyloseq object in RCM
#' @param legendLabSize size of the legend labels
#' @param legendTitleSize size of the legend title
#' @param axisLabSize size of the axis labels
#' @param axisTitleSize size of the axis title
#' @param taxTitle A boolean, should taxon title be printed
#' @param h Position of reference line. Set to NA for no line
#'
#'@details If whichTaxa is 'run' or 'response' the taxa with the highest
#' run statistics or steepest slopes of the response function are plotted,
#' numTax indicates the number. If whichTaxa is a character vector,
#' these are interpreted as taxon names to plot.
#' This function is mainly meant for linear response functions,
#' but can be used for others too.
#' The runs test statistic from the tseries package is used.
#'@return Plots a ggplot2-object to output
#'@export
#'@import ggplot2
#'@import phyloseq
#'@importFrom tseries runs.test
#'@seealso \code{\link{RCM}}
#'@examples
#'data(Zeller)
#' require(phyloseq)
#' tmpPhy = prune_taxa(taxa_names(Zeller)[1:120],
#' prune_samples(sample_names(Zeller)[1:75], Zeller))
#' #Subset for a quick fit
#' zellerRCMlin = RCM(tmpPhy, k = 2,
#' covariates = c('BMI','Age','Country','Diagnosis','Gender'),
#' responseFun = 'linear', round = TRUE, prevCutOff = 0.03)
#' residualPlot(zellerRCMlin)
residualPlot = function(RCM, Dim = 1, whichTaxa = "response",
resid = "Deviance", numTaxa = 9, mfrow = NULL,
samColour = NULL, samShape = NULL, legendLabSize = 15,
legendTitleSize = 16, axisLabSize = 14, axisTitleSize = 16,
taxTitle = TRUE, h = 0) {
if(is.null(RCM$covariates)){
stop("Residual plots only implemented for constrained ordinations!")
}
sampleScore = RCM$covariates %*% RCM$alpha[, Dim,
drop = FALSE]
if (resid == "Deviance") {
resMat = getDevianceRes(RCM, Dim)
} else if (resid == "Pearson") {
mu = extractE(RCM, seq_len(Dim))
# Residuals are also based on lower dimensions
thetaMat = matrix(byrow = TRUE, nrow = nrow(RCM$X),
ncol = ncol(RCM$X), data = RCM$thetas[,
switch(as.character(Dim), `0` = "Independence",
`0.5` = "Filtered",
paste0("Dim",Dim))])
resMat = (RCM$X - mu)/sqrt(mu + mu^2/thetaMat)
} else {
stop("Unknown residual type!")
}
if (!whichTaxa %in% c("runs", "response")) {
numTaxa = length(whichTaxa)
idTaxa = whichTaxa
} else {
sizes = if (whichTaxa == "runs")
apply(resMat > 0, 2, function(x) {
runs.test(factor(x))$statistic
}) else RCM$NB_params[2, , Dim]
# Select taxa with longest runs or strongest
# responses
idTaxa = which(sizes >= sort(sizes, decreasing = TRUE)[numTaxa])
}
# Prepare the plotting facets
mfrow = if (is.null(mfrow))
rep(ceiling(sqrt(numTaxa)), 2) else mfrow
parTmp = par(no.readonly = TRUE)
on.exit(par(parTmp))
par(mfrow = mfrow)
resMat = resMat[, idTaxa, drop = FALSE]
Colour = if (is.null(samColour))
"black" else get_variable(RCM$physeq, samColour)
Shape = if (is.null(samShape)){
if(length(idTaxa)>1) 1 else "none"
} else get_variable(RCM$physeq, samShape)
if (length(idTaxa) > 1) {
foo = lapply(colnames(resMat), function(tax) {
plot(x = sampleScore, y = resMat[, tax],
ylab = paste(resid, "residuals"),
xlab = paste("Environmental score in dimension", Dim),
main = tax, col = Colour, pch = Shape)
})
return(invisible())
} else {
Plot = ggplot(data.frame(x = c(sampleScore),
y = c(resMat), samColour = Colour, samShape = Shape),
mapping = aes_string(x = "x", y = "y",
colour = "samColour", shape = "samShape")) +
ylab(paste(resid, "residuals")) +
xlab(paste("Environmental score in dimension",
Dim)) + geom_point() + ggtitle(ifelse(taxTitle,
colnames(resMat), ""))
Plot = Plot + if (is.null(samShape))
guides(shape = FALSE) else scale_shape_discrete(name = samShape)
Plot = Plot + if (is.null(samColour)) {
guides(colour = FALSE)
} else if (is.factor(get_variable(RCM$physeq,
samColour))) {
scale_colour_discrete(name = samColour)
} else scale_colour_continuous(name = samColour)
Plot = Plot + geom_hline(yintercept = h, linetype = "dashed", col = "black")
Plot = Plot + theme_bw() + theme(axis.title = element_text(size = axisTitleSize),
axis.text = element_text(size = axisLabSize),
legend.title = element_text(size = legendTitleSize),
legend.text = element_text(size = legendLabSize))
return(Plot)
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.