#'A score function for the estimation of the column scores
#' in an unconstrained RC(M) model
#'
#' @param beta vector of length p+1+1+(k-1): p row scores,
#' 1 centering, one normalization and (k-1) orhtogonality lagrangian multipliers
#' @param X the nxp data matrix
#' @param reg a nx1 regressor matrix: outer product of rowScores and psis
#' @param thetas nxp matrix with the dispersion parameters
#' (converted to matrix for numeric reasons)
#' @param muMarg the nxp offset
#' @param k an integer, the dimension of the RC solution
#' @param p an integer, the number of taxa
#' @param n an integer, the number of samples
#' @param nLambda an integer, the number of restrictions
#' @param colWeights the weights used for the restrictions
#' @param cMatK the lower dimensions of the colScores
#' @param allowMissingness A boolean, are missing values present
#' @param naId The numeric index of the missing values in X
#' @param ... further arguments passed on to the jacobian
#' @return A vector of length p+1+1+(k-1) with evaluations of the
#' derivative of lagrangian
dNBllcolOld = function(beta, X, reg, thetas,
muMarg, k, p, n, colWeights, nLambda,
cMatK, allowMissingness, naId, ...) {
cMat = matrix(beta[seq_len(p)], byrow = TRUE,
ncol = p, nrow = 1)
mu = exp(reg %*% cMat) * muMarg
X = correctXMissingness(X, mu, allowMissingness, naId)
lambda1 = beta[p + 1]
# Lagrangian multiplier for centering
# restrictions sum(abunds*r_{ik}) = 0
lambda2 = beta[p + 2]
# Lagrangian multiplier for normalization
# restrictions sum(abunds*r^2_{ik}) = 1
lambda3 = if (k == 1) {
0
} else {
beta[(p + 3):length(beta)]
}
# Lagrangian multiplier for
# orthogonalization restriction
score = crossprod(reg, ((X - mu)/(1 +
mu/thetas))) + colWeights * (lambda1 +
lambda2 * 2 * cMat + (lambda3 %*%
cMatK))
center = sum(colWeights * cMat)
unitSum = sum(colWeights * cMat^2) -
1
if (k == 1) {
return(c(score, center, unitSum))
}
orthogons = tcrossprod(cMatK, cMat *
colWeights)
return(c(score, center, unitSum, orthogons))
}
dNBllcol = function(beta, X, reg, thetas, muMarg, allowMissingness, naId, ...) {
mu = exp(reg * beta) * muMarg
X = correctXMissingness(X, mu, allowMissingness, naId)
sum(reg*((X - mu)/(1 + mu/thetas)))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.