SVT_SparseArray-class | R Documentation |
The SVT_SparseArray class is a new container for efficient in-memory representation of multidimensional sparse arrays. It uses the SVT layout to represent the nonzero multidimensional data internally.
An SVT_SparseMatrix object is an SVT_SparseArray object of 2 dimensions.
Note that SVT_SparseArray and SVT_SparseMatrix objects replace the older and less efficient COO_SparseArray and COO_SparseMatrix objects.
## Constructor function:
SVT_SparseArray(x, dim=NULL, dimnames=NULL, type=NA)
x |
If If |
dim |
|
dimnames |
The dimnames of the object to construct. Must be |
type |
A single string specifying the requested type of the object. Normally, the SVT_SparseArray object returned by the constructor
function has the same svt <- SVT_SparseArray(x, type=type) is equivalent to doing: svt <- SVT_SparseArray(x) type(svt) <- type but the former is more convenient and will generally be more efficient. Supported types are all R atomic types plus |
SVT_SparseArray is a concrete subclass of the SparseArray virtual class. This makes SVT_SparseArray objects SparseArray derivatives.
The nonzero data in a SVT_SparseArray object is stored in a Sparse Vector Tree. We'll refer to this internal data representation as the SVT layout. See the "SVT layout" section below for more information.
The SVT layout is similar to the CSC layout (compressed, sparse, column-oriented format) used by CsparseMatrix derivatives from the Matrix package, like dgCMatrix or lgCMatrix objects, but with the following improvements:
The SVT layout supports sparse arrays of arbitrary dimensions.
With the SVT layout, the sparse data can be of any type.
Whereas CsparseMatrix derivatives only support sparse data
of type "double"
or "logical"
at the moment.
The SVT layout imposes no limit on the number of nonzero elements that can be stored. With dgCMatrix/lgCMatrix objects, this number must be < 2^31.
Overall, the SVT layout allows more efficient operations on SVT_SparseArray objects.
An SVT_SparseArray or SVT_SparseMatrix object.
An SVT (Sparse Vector Tree) is a tree of depth N - 1 where N is the number of dimensions of the sparse array.
The leaves in the tree can only be of two kinds: NULL or leaf vector. Leaves that are leaf vectors can only be found at the deepest level in the tree (i.e. at depth N - 1). All leaves found at a lower depth must be NULLs.
A leaf vector represents a sparse vector along the first dimension (a.k.a. innermost or fastest moving dimension) of the sparse array. It contains a collection of offset/value pairs sorted by strictly ascending offset. More precisely, a leaf vector is represented by an ordinary list of 2 parallel dense vectors:
nzvals: a vector (atomic or list) of nonzero values (zeros are not allowed);
nzoffs: an integer vector of offsets (i.e. 0-based positions).
The 1st vector determines the type of the leaf vector i.e. "double"
,
"integer"
, "logical"
, etc...
All the leaf vectors in the SVT must have the same type as the sparse array.
It's useful to realize that a leaf vector simply represents a 1D SVT.
In SparseArray 1.5.4 a new type of leaf vector was introduced called
lacunar leaf. A lacunar leaf is a non-empty leaf vector where the
nzvals component is set to NULL
. In this case the nonzero values are
implicit: they're all considered to be equal to one.
Examples:
An SVT_SparseArray object with 1 dimension has its nonzero data stored in an SVT of depth 0. Such SVT is represented by a single leaf vector.
An SVT_SparseArray object with 2 dimensions has its nonzero data stored in an SVT of depth 1. Such SVT is represented by a list of length the extend of the 2nd dimension (number of columns). Each list element is an SVT of depth 0 (as described above), or a NULL if the corresponding column is empty (i.e. has no nonzero data).
For example, the nonzero data of an 8-column sparse matrix will be stored in an SVT that looks like this:
.------------------list-of-length-8-----------------. / / / | | \ \ \ | | | | | | | | leaf leaf NULL leaf leaf leaf leaf NULL vector vector vector vector vector vector
The NULL leaves represent the empty columns (i.e. the columns with no nonzero elements).
An SVT_SparseArray object with 3 dimensions has its nonzero data stored in an SVT of depth 2. Such SVT is represented by a list of length the extend of the 3rd dimension. Each list element must be an SVT of depth 1 (as described above) that stores the nonzero data of the corresponding 2D slice, or a NULL if the 2D slice is empty (i.e. has no nonzero data).
And so on...
The SparseArray class for the virtual parent class of COO_SparseArray and SVT_SparseArray.
S4 classes dgCMatrix and lgCMatrix defined in the Matrix package, for the de facto standard of sparse matrix representations in the R ecosystem.
Virtual class CsparseMatrix defined in the Matrix package for the parent class of all classes that use the "CSC layout".
The Matrix::rsparsematrix
function in
the Matrix package.
Ordinary array objects in base R.
## ---------------------------------------------------------------------
## BASIC CONSTRUCTION
## ---------------------------------------------------------------------
SVT_SparseArray(dim=5:3) # allzero object
SVT_SparseArray(dim=c(35000, 2e6), type="raw") # allzero object
## Use a dgCMatrix object to fill the SVT_SparseArray object to construct:
x <- rsparsematrix(10, 16, density=0.1) # random dgCMatrix object
SVT_SparseArray(x, dim=c(8, 5, 4))
svt1 <- SVT_SparseArray(dim=c(12, 5, 2)) # allzero object
svt1[cbind(11, 2:5, 2)] <- 22:25
svt1
svt2 <- SVT_SparseArray(dim=c(6, 4), type="integer",
dimnames=list(letters[1:6], LETTERS[1:4]))
svt2[c(1:2, 8, 10, 15:17, 24)] <- (1:8)*10L
svt2
## ---------------------------------------------------------------------
## CSC (Compressed Sparse Column) LAYOUT VS SVT LAYOUT
## ---------------------------------------------------------------------
## dgCMatrix objects from the Matrix package use the CSC layout:
dgcm2 <- as(svt2, "dgCMatrix")
dgcm2@x # nonzero values
dgcm2@i # row indices of the nonzero values
dgcm2@p # breakpoints (0 followed by one breakpoint per column)
str(svt2)
m3 <- matrix(rpois(54e6, lambda=0.4), ncol=1200)
## Note that 'SparseArray(m3)' can also be used for this:
svt3 <- SVT_SparseArray(m3)
svt3
dgcm3 <- as(m3, "dgCMatrix")
## Compare type and memory footprint:
type(svt3)
object.size(svt3)
type(dgcm3)
object.size(dgcm3)
## Transpose:
system.time(svt <- t(t(svt3)))
system.time(dgcm <- t(t(dgcm3)))
identical(svt, svt3)
identical(dgcm, dgcm3)
## rbind():
m4 <- matrix(rpois(45e6, lambda=0.4), ncol=1200)
svt4 <- SVT_SparseArray(m4)
dgcm4 <- as(m4, "dgCMatrix")
system.time(rbind(svt3, svt4))
system.time(rbind(dgcm3, dgcm4))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.