R/DataFrame-class.R

Defines functions .show_DataFrame make_class_info_for_DataFrame_display .VectorAsDFrame .defaultAsDFrame as.data.frame.DataFrame droplevels.DFrame hasS3Method hasNonDefaultMethod .add_missing_columns .replaceCOLS_DFrame .append_NAs_to_list_elts .make_colnames .subassign_columns .make_rownames make_zero_col_DFrame DataFrame new_DataFrame .valid.DFrame.nrow .valid.DataFrame .valid.DataFrame.names .valid.DataFrame.rownames

Documented in as.data.frame.DataFrame DataFrame make_zero_col_DFrame

### =========================================================================
### DataFrame objects
### -------------------------------------------------------------------------


### DataFrame extends List and the List elements are considered to be the
### columns of the DataFrame object. This follows the data.frame/list model
### from base R.
setClass("DataFrame",
    contains=c("RectangularData", "List"),
    representation("VIRTUAL")
)

## Add DataFrame to the DataFrame_OR_NULL union.
setIs("DataFrame", "DataFrame_OR_NULL")


## DFrame is a concrete DataFrame subclass for representation of in-memory
## DataFrame objects. It inherits the "listData" slot from the SimpleList
## class, as well as some of its methods e.g. names(), as.list() and lapply().
## NOTE: Normal data.frames always have rownames (sometimes as integers),
## but we allow the rownames to be NULL for efficiency. This means that we
## need to store the number of rows (nrows).
setClass("DFrame",
    contains=c("DataFrame", "SimpleList"),
    representation(
        rownames="character_OR_NULL",
        nrows="integer"
    ),
    prototype(
        rownames=NULL,
        nrows=0L,
        listData = structure(list(), names=character())
    )
)


### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### vertical_slot_names() and horizontal_slot_names()
###

setMethod("vertical_slot_names", "DFrame",
    function(x) "rownames"
)

setMethod("horizontal_slot_names", "DFrame",
    function(x) parallel_slot_names(x)
)


### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### updateObject()
###

setMethod("updateObject", "DataFrame",
    function(object, ..., verbose=FALSE)
    {
        ## class attribute.
        if (class(object) == "DataFrame") {
            ## Starting with S4Vectors 0.23.19, all DataFrame instances need
            ## to be replaced with DFrame instances. Note that this is NOT a
            ## change of the internals, only a change of the class attribute.
            if (verbose)
                message("[updateObject] Setting class attribute of DataFrame ",
                        "instance to \"DFrame\" ... ", appendLF=FALSE)
            class(object) <- class(new("DFrame"))
            if (verbose)
                message("OK")
        } else {
            if (verbose)
                message("[updateObject] ", class(object), " object ",
                        "is current.\n",
                        "[updateObject] Nothing to update.")
        }
        callNextMethod()
    }
)


### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### Accessors
###

### Note that DataFrame extends List so the length of a DataFrame derivative
### is the length of its underlying List.
setMethod("ncol", "DataFrame", function(x) length(x))

### Note that DataFrame extends List so the names of a DataFrame derivative
### are the names of its underlying List.
setMethod("colnames", "DataFrame",
    function(x, do.NULL=TRUE, prefix="col")
    {
        if (!(identical(do.NULL, TRUE) && identical(prefix, "col")))
            stop(wmsg("argument 'do.NULL' and 'prefix' are not supported"))
        names(x)
    }
)

### BACKWARD COMPATIBILITY WITH OLD DataFrame INSTANCES:
### We shouldn't need this! We define these 2 methods only for backward
### compatibility with old serialized DataFrame instances (which have
### the "listData" slot). Without these methods, length() and names() (and
### therefore ncol(), dim(), colnames(), and dimnames()) are broken on
### these objects.
setMethod("length", "DataFrame", function(x) length(x@listData))
setMethod("names", "DataFrame", function(x) names(x@listData))

### BACKWARD COMPATIBILITY WITH OLD DataFrame INSTANCES:
### DataFrame derivatives don't have the "nrows" slot in general, only DFrame
### objects have it. So the nrow() method below only makes sense for DFrame
### objects. However, we still define it for DataFrame objects for backward
### compatibility with old serialized DataFrame instances (which have the
### "nrows" slot). If we don't do this, we get an infinite recursion when
### calling nrow() on these objects:
###   > nrow(x)
###   Error: C stack usage  7979284 is too close to the limit
### TODO: Remove this hack once all the old serialized DataFrame instances
### laying around have been updated with updateObject(). This might take
### years (best case scenario) or forever (worst case scenario).
setMethod("nrow", "DataFrame", function(x) x@nrows)

### BACKWARD COMPATIBILITY WITH OLD DataFrame INSTANCES:
### DataFrame derivatives don't have the "rownames" slot in general, only
### DFrame objects have it. So the rownames() method below only makes sense
### for DFrame objects. However, we still define it for DataFrame
### objects for backward compatibility with old serialized DataFrame
### instances (which have the "rownames" slot). If we don't do this, we
### get an infinite recursion when calling rownames() these objects:
###   > rownames(x)
###   Error: C stack usage  7975540 is too close to the limit
### TODO: Remove this hack once all the old serialized DataFrame instances
### laying around have been updated with updateObject(). This might take
### years (best case scenario) or forever (worst case scenario).
setMethod("rownames", "DataFrame",
          function(x, do.NULL = TRUE, prefix = "row")
          {
            rn <- x@rownames
            if (is.null(rn) && !do.NULL) {
              nr <- NROW(x)
              if (nr > 0L)
                rn <- paste(prefix, seq_len(nr), sep = "")
              else
                rn <- character(0L)
            }
            rn
          })

setReplaceMethod("rownames", "DFrame",
                 function(x, value)
                 {
                   if (!is.null(value)) {
                     if (anyMissing(value))
                       stop("missing values not allowed in rownames")
                     if (length(value) != nrow(x))
                       stop("invalid rownames length")
                     if (!is(value, "XStringSet"))
                       value <- as.character(value)
                   }
                   x@rownames <- value
                   x
                 })

setReplaceMethod("colnames", "DataFrame",
                 function(x, value)
                 {
                   if (!is.character(value))
                       stop("'value' must be a character vector ",
                            "in colnames(x) <- value")
                   if (length(value) > length(x))
                     stop("more column names than columns")
                   names(x) <- value
                   x
                 })

### Only difference with the "dimnames<-" method for RectangularData
### objects is that the replacement value is not allowed to be NULL.
setReplaceMethod("dimnames", "DataFrame",
    function(x, value)
    {
        if (!(is.list(value) && length(value) == 2L))
            stop(wmsg("dimnames replacement value must be a list of length 2"))
        callNextMethod()  # call method for RectangularData objects
    }
)


### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### Validity
###

.valid.DataFrame.rownames <- function(x)
{
  if (is.null(rownames(x)))
    return(NULL)
  if (length(rownames(x)) != nrow(x))
    return("number of row names and number of rows differ")
  NULL
}

.valid.DataFrame.names <- function(x)
{
  if (is.null(names(x)))
    return("column names should not be NULL")
  if (length(names(x)) != ncol(x))
    return("number of columns and number of column names differ")
  NULL
}

.OLD_DATAFRAME_INSTANCE_MSG <- c(
    "Note that starting with BioC 3.10, the class attribute ",
    "of all DataFrame **instances** should be set to ",
    "\"DFrame\". Please update this object ",
    "with 'updateObject(object, verbose=TRUE)' and ",
    "re-serialize it."
)

.valid.DataFrame <- function(x)
{
  ## class() is broken when used within a validity method. See:
  ##   https://stat.ethz.ch/pipermail/r-devel/2019-August/078337.html
  #if (class(x) == "DataFrame")
  #  return(paste(.OLD_DATAFRAME_INSTANCE_MSG, collapse=""))
  c(.valid.DataFrame.rownames(x),
    .valid.DataFrame.names(x))
}

setValidity2("DataFrame", .valid.DataFrame)

.valid.DFrame.nrow <- function(x)
{
  nr <- nrow(x)
  if (!length(nr) == 1)
    return("length of 'nrows' slot must be 1")
  if (nr < 0)
    return("number of rows must be non-negative")
  NULL
}

setValidity2("DFrame", .valid.DFrame.nrow)


### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### Constructor
###

### Low-level constructor. For internal use only.
### Note that, when supplied, 'nrows' is trusted (except when 'listData' is a
### data.frame or data-frame-like object).
### Calling 'new_DataFrame(x)' on an ordinary named list or an ordinary
### data.frame 'x' will turn it into a DataFrame in the most possibly
### straightforward way. In particular calling 'as.list()' or 'as.data.frame()'
### on the returned DataFrame will bring back 'x'.
### This is unlike 'DataFrame(x)' or 'as(x, "DataFrame")' which can do all
### kind of hard-to-predict mangling to 'x', unless the user does something
### like 'DataFrame(lapply(x, I))'. Not super convenient or intuitive!
new_DataFrame <- function(listData=list(), nrows=NA, what="arguments")
{
    stopifnot(is.list(listData))
    stopifnot(isSingleNumberOrNA(nrows))
    if (!is.integer(nrows))
        nrows <- as.integer(nrows)
    listData_nrow <- nrow(listData)
    if (is.null(listData_nrow)) {
        ## 'listData' is NOT a data.frame or data-frame-like object.
        if (length(listData) == 0L) {
            if (is.na(nrows))
                nrows <- 0L
            names(listData) <- character(0)
        } else {
            if (is.na(nrows)) {
                elt_nrows <- elementNROWS(listData)
                nrows <- elt_nrows[[1L]]
                if (!all(elt_nrows == nrows))
                    stop(wmsg(what, " imply differing number of rows"))
            }
            if (is.null(names(listData)))
                names(listData) <- paste0("V", seq_along(listData))
        }
    } else {
        ## 'listData' is a data.frame or data-frame-like object.
        if (is.na(nrows)) {
            nrows <- listData_nrow
        } else if (nrows != listData_nrow) {
            stop(wmsg("the supplied 'nrows' does not match ",
                      "the nb of rows in 'listData'"))
        }
        listData <- as.list(listData)
    }
    new2("DFrame", nrows=nrows, listData=listData, check=FALSE)
}

DataFrame <- function(..., row.names = NULL, check.names = TRUE,
                      stringsAsFactors)
{
  ## build up listData, with names from arguments
  if (!isTRUEorFALSE(check.names))
    stop("'check.names' must be TRUE or FALSE")
  if (!missing(stringsAsFactors))
    warning("'stringsAsFactors' is ignored")
  nr <- 0
  listData <- list(...)
  varlist <- vector("list", length(listData))
  metadata <- list()
  if (length(listData) > 0) {
    if (is(listData[[1L]], getClass("Annotated")))
        metadata <- metadata(listData[[1L]])
    dotnames <- names(listData)
    if (is.null(dotnames)) {
        dotnames <- rep("", length(listData))
    }
    qargs <- as.list(substitute(list(...)))[-1L]
    varnames <- as.list(dotnames)
    varnames[dotnames == ""] <- list(NULL)
    nrows <- ncols <- integer(length(varnames))
    for (i in seq_along(listData)) {
      var <- listData[[i]]
      element <- try(as(var, "DFrame"), silent = TRUE)
      if (inherits(element, "try-error"))
        stop("cannot coerce class \"", class(var)[[1L]], "\" to a DataFrame")
      nrows[i] <- nrow(element)
      ncols[i] <- ncol(element)
      varlist[[i]] <- element
      if (is(var, "AsIs")) {
        listData[[i]] <- drop_AsIs(var)
      } else {
        ## The only reason we use suppressWarnings() here is to suppress the
        ## deprecation warning we get at the moment (BioC 3.14) when calling
        ## dim() on a DataFrameList derivative. Remove when the dim() method
        ## for DataFrameList derivatives is gone (note that when this happens,
        ## dim() will return NULL on a DataFrameList derivative).
        var_dim <- suppressWarnings(dim(var))
        var_dims <- try(dims(var), silent=TRUE)
        if (inherits(var_dims, "try-error"))
            var_dims <- NULL
        if (ncol(element) > 1L ||
            is.list(var) && !is.object(var) ||
            length(var_dim) > 1L ||
            length(var_dims) > 1L)
        {
          if (is.null(varnames[[i]]))
            varnames[[i]] <- colnames(element)
          else
            varnames[[i]] <- paste(varnames[[i]], colnames(element), sep = ".")
        }
      }
      if (is.null(varnames[[i]])) {
          varnames[[i]] <- deparse(qargs[[i]])[1L]
      }
      if (missing(row.names))
        row.names <- rownames(element)
    }
    mcols <- combine_mcols(varlist)
    varlist <- lapply(varlist, as.list, use.names = FALSE)
    nr <- max(nrows)
    for (i in which((nrows > 0L) & (nrows < nr) & (nr %% nrows == 0L))) {
      recycle <- rep(seq_len(nrows[i]), length.out = nr)
      varlist[[i]] <- lapply(varlist[[i]], `[`, recycle, drop=FALSE)
      nrows[i] <- nr
    }
    if (!all(nrows == nr))
      stop("different row counts implied by arguments")
    varlist <- unlist(varlist, recursive = FALSE, use.names = FALSE)
    nms <- as.character(unlist(varnames[ncols > 0L]))
    if (check.names)
      nms <- make.names(nms, unique = TRUE)
    names(varlist) <- nms
  } else {
      names(varlist) <- character(0)
      mcols <- NULL
  }

  if (!is.null(row.names)) {
    if (anyMissing(row.names))
      stop("missing values in 'row.names'")
    if (length(varlist) && length(row.names) != nr)
      stop("invalid length of row names")
    row.names <- as.character(row.names)
  }

  ans <- new_DataFrame(varlist, nrows=as.integer(max(nr, length(row.names))))
  ans@rownames <- row.names
  mcols(ans) <- mcols
  metadata(ans) <- metadata
  ans
}

### Exported. Intended for developers to use in other packages and typically
### not needed by the end user.
### 3x faster than new("DFrame", nrows=nrow).
### 500x faster than DataFrame(matrix(nrow=nrow, ncol=0L)).
make_zero_col_DFrame <- function(nrow=0L)
{
    stopifnot(isSingleNumber(nrow))
    if (!is.integer(nrow))
        nrow <- as.integer(nrow)
    stopifnot(nrow >= 0L)
    new2("DFrame", nrows=nrow, check=FALSE)
}

### Alias for backward compatibility.
### NOT exported but used in packages IRanges, GenomicRanges,
### SummarizedExperiment, GenomicAlignments, and maybe more...
make_zero_col_DataFrame <- make_zero_col_DFrame


### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### Subsetting
###

### BACKWARD COMPATIBILITY WITH OLD DataFrame INSTANCES:
### We define the 2 methods below only to make getListElement() and `[[` work
### on the old DataFrame instances.
setMethod("getListElement", "DataFrame",
    function(x, i, exact=TRUE) getListElement(x@listData, i, exact=exact)
)
setMethod("[[", "DataFrame", function(x, i, j, ...)
{
    if (!missing(j)) {
        x[[j, ...]][[i]]
    } else {
        selectMethod("[[", "SimpleList")(x, i, j, ...)
    }
})

setMethod("[[", "DFrame", function(x, i, j, ...)
{
    if (!missing(j)) {
        x[[j, ...]][[i]]
    } else {
        callNextMethod()
    }
})

setReplaceMethod("[[", "DFrame",
                 function(x, i, j,..., value)
                 {
                   nrx <- nrow(x)
                   lv <- NROW(value)
                   if (!missing(j) || length(list(...)) > 0)
                     warning("arguments beyond 'i' ignored")
                   if (missing(i))
                     stop("subscript is missing")
                   if (!is.character(i) && !is.numeric(i))
                     stop("invalid subscript type")
                   if (length(i) < 1L)
                     stop("attempt to select less than one element")
                   if (length(i) > 1L)
                     stop("attempt to select more than one element")
                   if (is.numeric(i) && (i < 1L || i > ncol(x) + 1L))
                     stop("subscript out of bounds")
                   if (!is.null(value) && (nrx != lv)) {
                     if ((nrx == 0) || (lv == 0) || (nrx %% lv != 0))
                       stop(paste(lv, "elements in value to replace",
                                  nrx, "elements"))
                     else
                       value <- rep(value, length.out = nrx)
                   }
                   callNextMethod(x, i, value=value)
                 })

### BACKWARD COMPATIBILITY WITH OLD DataFrame INSTANCES:
### DataFrame derivatives don't have the "listData", "nrows", or "rownames"
### slots in general, only DFrame objects have them. So the extractROWS()
### method below only makes sense for DFrame objects. However, we still
### define it for DataFrame objects for backward compatibility with
### old serialized DataFrame instances (which have all these slots). If we
### don't do this, calling extractROWS() on these objects will actually call
### the method for Vector derivatives which is a no-op on these objects.
### TODO: Remove this hack once all the old serialized DataFrame instances
### laying around have been updated with updateObject(). This might take
### years (best case scenario) or forever (worst case scenario).
setMethod("extractROWS", "DataFrame",
    function(x, i)
    {
        i <- normalizeSingleBracketSubscript(i, x, allow.NAs=TRUE,
                                             as.NSBS=TRUE)
        x <- updateObject(x, check=FALSE)
        slot(x, "listData", check=FALSE) <- lapply(as.list(x), extractROWS, i)
        slot(x, "nrows", check=FALSE) <- length(i)
        if (!is.null(rownames(x)))
            slot(x, "rownames", check=FALSE) <- extractROWS(rownames(x), i)
        x
    }
)

### BACKWARD COMPATIBILITY WITH OLD DataFrame INSTANCES:
### DataFrame derivatives don't have the "listData" slot in general, only
### DFrame objects have it. So the extractCOLS() method below only makes
### sense for DFrame objects. However, we still define it for DataFrame
### objects for backward compatibility with old serialized DataFrame
### instances (which have all these slots). If we don't do this,
### calling extractCOLS() on these objects will actually call the
### method for Vector derivatives which is a no-op on these objects.
### TODO: Remove this hack once all the old serialized DataFrame instances
### laying around have been updated with updateObject(). This might take
### years (best case scenario) or forever (worst case scenario).
setMethod("extractCOLS", "DataFrame", function(x, i) {
    ## Remove this call to updateObject() when the signature of this
    ## extractCOLS() method is changed from DataFrame to DFrame.
    if (class(x)[[1L]] == "DataFrame")
        x <- updateObject(x, check=FALSE)
    if (missing(i))
        return(x)
    if (!is(i, "IntegerRanges")) {
        xstub <- setNames(seq_along(x), names(x))
        i <- normalizeSingleBracketSubscript(i, xstub)
    }
    new_listData <- extractROWS(x@listData, i)
    new_mcols <- extractROWS(mcols(x, use.names=FALSE), i)
    BiocGenerics:::replaceSlots(x, listData=new_listData,
                                   elementMetadata=new_mcols,
                                   check=FALSE)
})

setMethod("[", "DataFrame",
    function(x, i, j, ..., drop=TRUE)
    {
        if (!isTRUEorFALSE(drop))
            stop("'drop' must be TRUE or FALSE")
        if (length(list(...)) > 0L)
            warning("parameters in '...' not supported")

        ## NOTE: matrix-style subsetting by logical matrix not supported.
        list_style_subsetting <- (nargs() - !missing(drop)) < 3L
        if (list_style_subsetting || !missing(j)) {
            if (list_style_subsetting) {
                if (!missing(drop))
                    warning("'drop' argument ignored by list-style subsetting")
                if (missing(i))
                    return(x)
                j <- i
            }
            x <- extractCOLS(x, j)
            if (list_style_subsetting)
                return(x)
        }
        if (!missing(i))
            x <- extractROWS(x, i)
        if (missing(drop))  # drop by default if only one column left
            drop <- ncol(x) == 1L
        if (drop) {
            ## one column left
            if (ncol(x) == 1L)
                return(x[[1L]])
            ## one row left
            if (nrow(x) == 1L)
                return(as(x, "list"))
        }
        x
    }
)

.make_rownames <- function(x, i, nsbs, value)
{
    x_nrow <- nrow(x)
    x_rownames <- rownames(x)
    if (!missing(i) && is.character(i)) {
        value_rownames <- i
    } else {
        value_rownames <- rownames(value)
    }
    nsbs <- as.integer(nsbs)
    i_max <- max(nsbs, x_nrow)
    if (i_max <= x_nrow || is.null(x_rownames) && is.null(value_rownames))
        return(x_rownames)
    if (is.null(value_rownames))
        value_rownames <- as.character(nsbs)
    if (is.null(x_rownames))
        x_rownames <- as.character(seq_len(x_nrow))
    replaceROWS(x_rownames, nsbs[nsbs > x_nrow], value_rownames[nsbs > x_nrow])
}

.subassign_columns <- function(x, nsbs, value) {
    x_ncol <- ncol(x)
    value_ncol <- length(value)
    if (value_ncol > x_ncol)
        stop("provided ", value_ncol, " variables ",
             "to replace ", x_ncol, " variables")
    if (x_ncol != 0L) {
        if (value_ncol == 0L)
            stop("replacement has length zero")
        FUN <- if (nsbs@upper_bound_is_strict) replaceROWS else mergeROWS
        new_listData <-
            lapply(structure(seq_len(ncol(x)), names=names(x)),
                   function(j)
                       FUN(x[[j]], nsbs,
                           value[[((j - 1L) %% value_ncol) + 1L]]))
        slot(x, "listData", check=FALSE) <- new_listData
    }
    x
}

setMethod("replaceROWS", c("DFrame", "ANY"),
          function(x, i, value)
          {
              nsbs <- normalizeSingleBracketSubscript(i, x, as.NSBS=TRUE)
              if (length(nsbs) == 0L) {
                  return(x)
              }
              .subassign_columns(x, nsbs, value)
          })

setMethod("mergeROWS", c("DFrame", "ANY"),
    function(x, i, value)
    {
        nsbs <- normalizeSingleBracketSubscript(i, x, allow.append=TRUE,
                                                as.NSBS=TRUE)
        if (length(nsbs) == 0L) {
            return(x)
        }
        x <- .subassign_columns(x, nsbs, value)
        i_max <- max(as.integer(nsbs))
        x_nrow <- nrow(x)
        if (i_max > x_nrow) {
            x@rownames <- .make_rownames(x, i, nsbs, value)
            x@nrows <- i_max
        }
        x
    }
)

.make_colnames <- function(x, i, x_len, value) {
    if (!missing(i) && is.numeric(i) && length(i) > 0L) {
        appended <- i > x_len
        if (!is.null(names(value))) {
            newcn <- names(value)[appended]
        } else {
            newcn <- paste0("V", i[appended])
        }
        names(x)[i[appended]] <- newcn
    }
    names(x)
}

.append_NAs_to_list_elts <- function(x, na.count=0L)
{
    ## Use same trick as in .combine_DFrame_rows().
    NAs <- Rle(NA, na.count)
    lapply(setNames(seq_along(x), names(x)),
        function(i) {
            tryCatch(
                bindROWS2(x[[i]], list(NAs)),
                error=function(err) {
                    stop(wmsg("failed to append NAs to column ",
                              "'", names(x)[[i]], "':\n  ",
                              conditionMessage(err)))
                }
            )
        }
    )
}

### Note that:
### 1. Despite its name, this method can do more than just replacing
###    existing columns. It can also append new columns (when 'i' contains
###    indices > 'ncol(x)') or remove columns (when 'value' is NULL).
### 2. The method usually preserves 'nrow(x)' and 'rownames(x)', except
###    when 'nrow(value)' > 'nrow(x)', in which case rows of NAs are
###    added to 'x' to match the number of rows in 'value'.
.replaceCOLS_DFrame <- function(x, i, value)
{
    stopifnot(is.null(value) || is(value, "DataFrame"))
    new_nrow <- x_nrow <- nrow(x)
    new_rownames <- rownames(x)
    sl <- as(x, "SimpleList")
    if (!is.null(value)) {
        value_nrow <- nrow(value)
        if (value_nrow > x_nrow) {
            ## Add rows of NAs to 'x'.
            sl@listData <- .append_NAs_to_list_elts(sl@listData,
                                                    value_nrow - x_nrow)
            ri <- seq_len(value_nrow)
            new_nrow <- value_nrow
            new_rownames <- .make_rownames(x, ri, ri, value)
        } else if (x_nrow < value_nrow) {
            if (value_nrow == 0L || x_nrow %% value_nrow != 0L)
                stop(wmsg("replacement has ", value_nrow, " rows, ",
                          "data has ", x_nrow))
            ## Add rows to 'value' by recycling its columns.
            k <- x_nrow %/% value_nrow
            value <- extractROWS(value, rep.int(seq_len(value_nrow), k))
        }
        value <- as(value, "SimpleList")
    }
    ## Note that this subassignment operation on SimpleList object 'sl' could
    ## modify its length (e.g. if 'i' contains indices > 'ncol(x)' or 'value'
    ## is NULL). In this case, the mcols() on 'sl' will get automatically
    ## adjusted to stay parallel to 'sl'.
    if (missing(i)) {
        sl[] <- value
    } else {
        sl[i] <- value
    }
    if (!is.null(value))
        names(sl@listData) <- .make_colnames(sl@listData, i, length(x), value)
    BiocGenerics:::replaceSlots(x, listData=sl@listData,
                                   elementMetadata=sl@elementMetadata,
                                   nrows=new_nrow,
                                   rownames=new_rownames,
                                   check=FALSE)
}

setMethod("replaceCOLS", c("DFrame", "ANY"), .replaceCOLS_DFrame)

setMethod("normalizeSingleBracketReplacementValue", "DataFrame",
          function(value, x)
          {
              hasColumns <- is(value, "DataFrame") || is.list(value) ||
                  length(dim(value)) >= 2L
              if (is.null(value) || (hasColumns && length(value) == 0L))
                  return(NULL)
              value <- as(value, "DataFrame", strict=FALSE)
              if (!hasColumns) {
                  names(value) <- NULL # don't try this at home
              }
              value
          })

.add_missing_columns <- function(x, j) {
    if (!missing(j)) {
        j2 <- normalizeSingleBracketSubscript(j, as.list(x),
                                              allow.append=TRUE)
        x[j[j2 > ncol(x)]] <- NA
    }
    x
}

setReplaceMethod("[", "DataFrame",
                 function(x, i, j, ..., value)
{
    if (length(list(...)) > 0)
        warning("parameters in '...' not supported")
    value <- normalizeSingleBracketReplacementValue(value, x)
    if (nargs() < 4) {
        value <- recycleSingleBracketReplacementValue(value, x)
        replaceCOLS(x, i, value)
    } else {
        value <- recycleSingleBracketReplacementValue(value, x, i)
        if (!missing(i)) {
            x <- .add_missing_columns(x, j)
            value <- mergeROWS(extractCOLS(x, j), i, value)
        }
        replaceCOLS(x, j, value)
    }
})

hasNonDefaultMethod <- function(f, signature) {
  any(selectMethod(f, signature)@defined != "ANY")
}

hasS3Method <- function(f, signature) {
  !is.null(getS3method(f, signature, optional=TRUE))
}

droplevels.DFrame <- function(x, except=NULL) {
  canDropLevels <- function(xi) {
    hasNonDefaultMethod(droplevels, class(xi)[[1L]]) ||
      hasS3Method("droplevels", class(xi)[[1L]])
  }
  drop.levels <- vapply(x, canDropLevels, NA)
  if (!is.null(except))
    drop.levels[except] <- FALSE
  x@listData[drop.levels] <- lapply(x@listData[drop.levels], droplevels)
  x
}
setMethod("droplevels", "DFrame", droplevels.DFrame)

setMethod("rep", "DataFrame", function(x, ...) {
  x[rep(seq_len(nrow(x)), ...),,drop=FALSE]
})


### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### Coercion
###

### S3/S4 combo for as.data.frame.DataFrame
### Same arguments as as.data.frame.matrix().
as.data.frame.DataFrame <- function(x, row.names=NULL, optional=FALSE,
                                    make.names=TRUE, ...,
                                    stringsAsFactors=FALSE)
{
    if (!isTRUEorFALSE(make.names))
        stop("'make.names' must be TRUE or FALSE")
    if (length(list(...)))
        warning("arguments in '...' ignored")
    if (!identical(stringsAsFactors, FALSE))
        stop("'stringsAsFactors' not supported")
    if (is.null(row.names)) {
        row.names <- rownames(x)
        if (is.null(row.names)) {
            if (ncol(x) == 0L)
                row.names <- seq_len(nrow(x))
        } else {
            if (make.names)
                row.names <- make.unique(row.names)
        }
    } else {
        row.names <- as.character(row.names)
        if (make.names)
            row.names <- make.names(row.names, unique=TRUE)
        if (length(row.names) != nrow(x))
            stop("row names supplied are of the wrong length")
    }
    old_option <- getOption("stringsAsFactors")
    options(stringsAsFactors=FALSE)
    on.exit(options(stringsAsFactors=old_option))
    x_colnames <- colnames(x)
    df_list <- lapply(setNames(seq_along(x), x_colnames),
        function(j) {
            col <- x[[j]]
            if (is.data.frame(col))
                return(col)
            if (is(col, "DataFrame"))
                return(as.data.frame(col, optional=optional))
            ## If 'col is an AtomicList derivative (e.g. IntegerList,
            ## CharacterList, etc...) or other List derivative that compares
            ## recursively (i.e. not an IRanges, GRanges, or DNAStringSet,
            ## etc... object), we turn it into an ordinary list. This is
            ## because the "as.data.frame" method for List objects produces
            ## this weird data frame:
            ##   > as.data.frame(IntegerList(11:12, 21:23))
            ##     group group_name value
            ##   1     1       <NA>    11
            ##   2     1       <NA>    12
            ##   3     2       <NA>    21
            ##   4     2       <NA>    22
            ##   5     2       <NA>    23
            ## which is not what we want here.
            ## List derivatives that compare recursively should not need this
            ## because they are expected to override the "as.data.frame" method
            ## for List objects with a method that returns a data.frame with
            ## one row per list element.
            if (is(col, "List") && pcompareRecursively(col))
                col <- as.list(col)
            protect <- !is(col, "AsIs") && is.list(col) && !is.object(col)
            if (protect)
                col <- I(col)  # set AsIs class to protect column
            df <- as.data.frame(col, optional=optional)
            if (protect)
                df[[1L]] <- unclass(df[[1L]])  # drop AsIs class
            if (is.null(colnames(col)) && ncol(df) == 1L)
                colnames(df) <- x_colnames[[j]]
            df
        })
    do.call(data.frame,
            c(df_list, list(row.names=row.names,
                            check.names=!optional,
                            stringsAsFactors=FALSE)))
}
setMethod("as.data.frame", "DataFrame", as.data.frame.DataFrame)

setMethod("as.matrix", "DataFrame", function(x) {
  if (length(x) == 0L)
    m <- matrix(logical(), nrow = nrow(x), ncol = 0L)
  else m <- do.call(cbind, as.list(x))
  rownames(m) <- rownames(x)
  m
})

setAs("data.frame", "DFrame",
      function(from) {
        rn <- attributes(from)[["row.names"]]
        if (is.integer(rn))
          rn <- NULL
        nr <- nrow(from)
### FIXME: this should be:
        ## from <- as.list(from)
### But unclass() causes deep copy
        attr(from, "row.names") <- NULL
        class(from) <- NULL
        ans <- new_DataFrame(from, nrows=nr)
        ans@rownames <- rn
        ans
      })

setAs("data.table", "DFrame",
    function(from)
    {
        df <- data.table:::as.data.frame.data.table(from)
        as(df, "DFrame")
    }
)

setAs("table", "DFrame",
      function(from) {
        df <- as.data.frame(from)
        factors <- sapply(df, is.factor)
        factors[1] <- FALSE
        do.call(DataFrame, c(df[1], lapply(df[factors], Rle), df["Freq"]))
      })

setOldClass(c("xtabs", "table"))
setAs("xtabs", "DFrame",
      function(from) {
        class(from) <- "table"
        as(from, "DFrame")
      })

.defaultAsDFrame <- function(from) {
  if (length(dim(from)) == 2L) {
    df <- as.data.frame(from, stringsAsFactors=FALSE)
    if (0L == ncol(from))
      ## colnames on matrix with 0 columns are 'NULL'
      names(df) <- character()
    as(df, "DFrame")
  } else {
    ans <- new_DataFrame(setNames(list(from), "X"), nrows=length(from))
    ans@rownames <- names(from)
    ans
  }
}

setAs("ANY", "DFrame", .defaultAsDFrame)

setAs("ANY", "DataFrame", function(from) as(from, "DFrame"))
setAs("SimpleList", "DataFrame", function(from) as(from, "DFrame"))

.VectorAsDFrame <- function(from) {
  ans <- .defaultAsDFrame(from)
  from_mcols <- mcols(from, use.names=FALSE)
  if (!is.null(from_mcols))
    ans <- cbind(ans, from_mcols)
  ans
}

## overriding the default inheritance-based coercion from methods package
setAs("SimpleList", "DFrame", .VectorAsDFrame)
setAs("Vector", "DFrame", .VectorAsDFrame)

## note that any element named 'row.names' will be interpreted differently
## is this a bug or a feature?
setAs("list", "DFrame",
      function(from) {
        do.call(DataFrame, c(from, list(check.names=is.null(names(from)))))
      })

setAs("NULL", "DFrame", function(from) as(list(), "DFrame"))

setAs("AsIs", "DFrame",
      function(from) {
        new_DataFrame(setNames(list(drop_AsIs(from)), "X"))
      })

setAs("ANY", "DataFrame_OR_NULL", function(from) as(from, "DFrame"))

setMethod("coerce2", "DataFrame",
    function(from, to)
    {
        to_class <- class(to)[[1L]]
        ## Is this test equivalent to is.list(from) && !is.object(from)?
        if (class(from)[[1L]] == "list") {
            ## Turn an ordinary list into a DataFrame in the most possibly
            ## straightforward way.
            ans <- new_DataFrame(from, what="list elements")
            if (is(ans, to_class))
                return(ans)
            ans <- as(ans, to_class, strict=FALSE)
            ## Even though coercion from DataFrame to 'class(to)' "worked", it
            ## can return a broken object. This happens when an automatic
            ## coercion method gets in the way. The problem with these methods
            ## is that they often do the wrong thing and don't even bother to
            ## validate the object they return!
            ## One possible problem with an automatic coercion method from
            ## DataFrame to a DataFrame subclass is that it will set the
            ## elementType slot to "ANY" which could be wrong. So we fix this.
            ans@elementType <- to@elementType
            validObject(ans)
            return(ans)
        }
        ## Some objects like SplitDataFrameList have a dim() method that
        ## returns a non-MULL object (a matrix!) even though they don't have
        ## an array-like (or matrix-like) semantic.
        from_dim <- dim(from)
        if (length(from_dim) == 2L && !is.matrix(from_dim)) {
            if (is(from, to_class))
                return(from)
            ans <- as(from, to_class, strict=FALSE)
            if (!identical(dim(ans), from_dim))
                stop(wmsg("coercion of ", class(from)[[1L]], " object ",
                          "to ", to_class, " didn't preserve its dimensions"))
            ## Try to restore the dimnames if they were lost or altered.
            from_dimnames <- dimnames(from)
            if (!identical(dimnames(ans), from_dimnames)) {
                tmp <- try(`dimnames<-`(ans, value=from_dimnames), silent=TRUE)
                if (!inherits(tmp, "try-error"))
                    ans <- tmp
            }
            return(ans)
        }
        callNextMethod()
    }
)


### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### Display
###

setMethod("classNameForDisplay", "DFrame",
    function(x) if (class(x) == "DFrame") "DataFrame" else class(x)
)

setMethod("makeNakedCharacterMatrixForDisplay", "DataFrame",
    function(x)
    {
        df <- data.frame(lapply(x, showAsCell), check.names=FALSE,
                         row.names=NULL)
        as.matrix(format(df))
    }
)

make_class_info_for_DataFrame_display <- function(x)
{
    vapply(x, function(xi) paste0("<", classNameForDisplay(xi), ">"),
           character(1), USE.NAMES=FALSE)
}

.show_DataFrame <- function(x)
{
    nhead <- get_showHeadLines()
    ntail <- get_showTailLines()
    x_nrow <- nrow(x)
    x_ncol <- ncol(x)
    cat(classNameForDisplay(x), " with ",
        x_nrow, " row", ifelse(x_nrow == 1L, "", "s"),
        " and ",
        x_ncol, " column", ifelse(x_ncol == 1L, "", "s"),
        "\n", sep="")
    if (x_nrow != 0L && x_ncol != 0L) {
        x_rownames <- rownames(x)
        if (x_nrow <= nhead + ntail + 1L) {
            m <- makeNakedCharacterMatrixForDisplay(x)
            if (!is.null(x_rownames))
                rownames(m) <- x_rownames
        } else {
            m <- rbind(makeNakedCharacterMatrixForDisplay(head(x, nhead)),
                       rbind(rep.int("...", x_ncol)),
                       makeNakedCharacterMatrixForDisplay(tail(x, ntail)))
            rownames(m) <- make_rownames_for_RectangularData_display(
                                             x_rownames, x_nrow,
                                             nhead, ntail)
        }
        m <- rbind(make_class_info_for_DataFrame_display(x), m)
        print(m, quote=FALSE, right=TRUE)
    }
    invisible(NULL)
}

setMethod("show", "DataFrame",
    function(object)
    {
        if (class(object) == "DataFrame") {
            ## Aug 20, 2019: Too early for this warning.
            #warning(wmsg(.OLD_DATAFRAME_INSTANCE_MSG))
            object <- updateObject(object, check=FALSE)
        }
        .show_DataFrame(object)
    }
)

setMethod("showAsCell", "DataFrame", showAsCell_array)
Bioconductor/S4Vectors documentation built on Nov. 2, 2024, 4:34 p.m.