R/aperm2.R

Defines functions aperm2 extended_aperm validate_perm normarg_perm

Documented in aperm2

### =========================================================================
### aperm2()
### -------------------------------------------------------------------------
###
### Extend base::aperm() functionality by allowing dropping and/or
### adding "ineffective dimensions" (i.e. dimensions with an extent of 1).
### Like base::aperm(), aperm2() preserves the length of input array 'a'.
###


### Normalize 'perm' argument of extended aperm().
### Only performs a shallow check of 'perm' e.g. won't say anything if 'perm'
### contains values > length(a_dim) or duplicates. Use validate_perm() defined
### below on the value returned by normarg_perm() for a full check.
normarg_perm <- function(perm, a_dim)
{
    if (missing(perm))
        return(rev(seq_along(a_dim)))
    if (is.null(perm))
        return(seq_along(a_dim))
    if (!is.numeric(perm))
        stop(wmsg("'perm' must be an integer vector"))
    if (!is.integer(perm))
        perm <- as.integer(perm)
    perm
}

### Validate 'perm' argument of extended aperm().
### Return TRUE if the argument is valid or a single string describing why
### it's not. This design allows the function to be used in the context of
### a validity method.
validate_perm <- function(perm, a_dim)
{
    if (!is.integer(perm))
        return("'perm' must be an integer vector")
    if (length(perm) == 0L)
        return("'perm' cannot be an empty vector")
    perm0 <- perm[!is.na(perm)]
    if (length(perm0) == 0L) {
        dropped_dims <- a_dim
    } else {
        if (S4Vectors:::anyMissingOrOutside(perm0, 1L, length(a_dim)))
            return(paste0("all non-NA values in 'perm' ",
                          "must be >= 1 and <= 'length(dim(a))'"))
        if (anyDuplicated(perm0))
            return("'perm' cannot contain non-NA duplicates")
        dropped_dims <- a_dim[-perm0]
    }
    if (!all(dropped_dims == 1L))
        return("only dimensions with an extent of 1 can be dropped")
    TRUE
}

### 'APERM.FUN' is the function that will actually take care of permuting
### the dimensions. It only needs to know how to handle "clean" permutations
### i.e. permutation vectors like those handled by base::aperm().
### The current implementation assumes that array-like object 'a' supports
### set_dim() and set_dimnames().
### NOT exported but used in the SparseArray package!
extended_aperm <- function(a, perm, APERM.FUN)
{
    a_dim <- dim(a)
    a_dimnames <- dimnames(a)
    perm <- normarg_perm(perm, a_dim)
    msg <- validate_perm(perm, a_dim)
    if (!isTRUE(msg))
        stop(wmsg(msg))

    nonNA_idx <- which(!is.na(perm))
    perm0 <- perm[nonNA_idx]

    ## 1. Drop the dimensions not present in 'perm0'. Even though the
    ##    dimensions to drop are guaranteed to have an extent of 1, we should
    ##    not use drop() for this because this would drop **all** the
    ##    dimensions with an extent of 1, including some of the dimensions
    ##    to keep (those can also have an extent of 1).
    ans <- set_dim(a, a_dim[sort(perm0)])

    ## 2. Permute the remaining dimensions.
    ##    Note that by default rank() returns a numeric vector so we
    ##    use 'ties.method="first"' to get an integer vector (even
    ##    though 'perm0' will never contain duplicates).
    ans <- APERM.FUN(ans, perm=rank(perm0, ties.method="first"))

    ## 3. Add ineffective dimensions corresponding to NAs in 'perm'.
    ans_dim <- rep.int(1L, length(perm))
    ans_dim[nonNA_idx] <- dim(ans)
    ans <- set_dim(ans, ans_dim)

    ## 4. Take care of the dimnames.
    if (!is.null(a_dimnames))
        ans <- set_dimnames(ans, simplify_NULL_dimnames(a_dimnames[perm]))
    ans
}

### Supports dropping and/or adding ineffective dimensions.
aperm2 <- function(a, perm)
{
    if (!is.array(a))
        stop(wmsg("'a' must be an array"))
    extended_aperm(a, perm, base::aperm)
}
Bioconductor/S4Arrays documentation built on Jan. 15, 2025, 4:32 p.m.