R/timescape.R

Defines functions replaceSpaces getMutationsData checkPerts checkCloneColours checkGtypePositioning checkTreeEdges checkClonalPrev checkAlpha checkRequiredInputs checkMinDims processUserData timescape

# #' TimeScape
# #'
# #' \code{timescape} is a tool for visualizing temporal clonal evolution data.
# #'
# #' Interactive components:
# #'   \enumerate{
# #'
# #'     \item Mouseover any clone to view its (i) clone ID and (ii) clonal
# #'     prevalence at each time point.
# #'
# #'     \item Click the view switch button to switch from the traditional
# #'     timescape view to the clonal trajectory view, where each clone
# #'     changes prevalence on its own track.
# #'
# #'     \item Click the download buttons to download a PNG or SVG of the
# #'     view.
# #'
# #'   }
# #'
# #' @param clonal_prev \code{data.frame} Clonal prevalence.
# #'     Required columns are:
# #'     \describe{
# #'
# #'       \item{timepoint:}{\code{character()} time point. Time
# #'          points will be alphanumerically sorted in the view.}
# #'
# #'       \item{clone_id:}{\code{character()} clone id.}
# #'
# #'       \item{clonal_prev:}{\code{numeric()} clonal prevalence.}
# #'
# #'     }
# #' @param tree_edges \code{data.frame} Tree edges of a rooted tree.
# #'     Required columns are:
# #'     \describe{
# #'
# #'       \item{source:}{\code{character()} source node id.}
# #'
# #'       \item{target:}{\code{character()} target node id.}
# #'
# #'     }
# #' @param mutations \code{data.frame} (Optional)  Mutations
# #'     occurring at each clone. Required columns are:
# #'     \describe{
# #'
# #'       \item{chrom:}{\code{character()} chromosome number.}
# #'
# #'       \item{coord:}{\code{numeric()} coordinate of mutation
# #'          on chromosome.}
# #'
# #'       \item{clone_id:}{\code{character()} clone id.}
# #'
# #'       \item{timepoint:}{\code{character()} time point.}
# #'
# #'       \item{VAF:}{\code{numeric()} variant allele frequency
# #'          of the mutation in the corresponding timepoint.}
# #'
# #'     }
# #'     Any additional field will be shown in the mutation table.
# #' @param clone_colours \code{data.frame} Clone ids and their
# #'     corresponding colours. Required columns are:
# #'     \describe{
# #'
# #'       \item{clone_id:}{\code{character()} clone id.}
# #'
# #'       \item{colour:}{\code{character()} the corresponding Hex
# #'          colour for each clone id.}
# #'
# #'     }
# #' @param xaxis_title \code{character()} (Optional) x-axis title.
# #'     Default is "Time Point".
# #' @param yaxis_title \code{character()} (Optional) y-axis title.
# #'     Default is "Clonal Prevalence".
# #' @param phylogeny_title \code{character()} (Optional) Legend
# #'     phylogeny title. Default is "Clonal Phylogeny".
# #' @param alpha \code{numeric()} (Optional) Alpha value for clonal
# #'     sweeps, range [0, 100].
# #' @param genotype_position \code{character()} (Optional) How to
# #'     position the genotypes from ["centre", "stack", "space"].
# #'   \enumerate{
# #'
# #'       \item centre: genotypes are centred with
# #'          respect to their ancestors.
# #'
# #'       \item stack: genotypes are stacked such
# #'          that nogenotype is split at any time point.
# #'
# #'       \item space: genotypes are stacked but
# #'          with a bit of spacing at the bottom.
# #'
# #'     }
# #' @param perturbations \code{data.frame} (Optional) Any
# #'     perturbations that occurred between two time points.
# #'     Required columns are:
# #'     \describe{
# #'
# #'       \item{pert_name:}{\code{character()} the perturbation name.}
# #'
# #'       \item{prev_tp:}{\code{character()} the time point (as labelled
# #'          in clonal prevalence data) BEFORE perturbation.}
# #'
# #'     }
# #' @param sort \code{logical()} (Optional) Whether (TRUE) or not (FALSE)
# #'     to vertically sort the genotypes by their emergence values
# #'     (descending). Default is FALSE. Note that genotype sorting will
# #'     always retain the phylogenetic hierarchy, and this parameter will
# #'     only affect the ordering of siblings.
# #' @param show_warnings \code{logical()} (Optional) Whether or not to show
# #'     any warnings. Default is TRUE.
# #' @param width \code{numeric()} (Optional) Width of the plot. Minimum
# #'     width is 450.
# #' @param height \code{numeric()} (Optional) Height of the plot. Minimum
# #'     height with and without mutations is 500 and 260, respectively.
# #' @export
timescape <- function(clonal_prev,
                      tree_edges,
                      mutations = "NA",
                      clone_colours = "NA",
                      xaxis_title = "Time Point",
                      yaxis_title = "Clonal Prevalence",
                      phylogeny_title = "Clonal Phylogeny",
                      alpha = 50,
                      genotype_position = "stack",
                      perturbations = "NA",
                      sort = FALSE,
                      show_warnings = TRUE,
                      width = 900,
                      height = NULL) {

  # forward options using x
  x = processUserData(clonal_prev,
                      tree_edges,
                      mutations,
                      clone_colours,
                      xaxis_title,
                      yaxis_title,
                      phylogeny_title,
                      alpha,
                      genotype_position,
                      perturbations,
                      sort,
                      show_warnings,
                      width,
                      height)

  return(x)

}

# #' Function to process the user data
# #' @param clonal_prev -- data frame of Clonal prevalence. Note: timepoints will be alphanumerically sorted in the view.
# #'   Format: columns are (1) character() "timepoint" - time point
# #'                       (2) character() "clone_id" - clone id
# #'                       (3) numeric() "clonal_prev" - clonal prevalence.
# #' @param tree_edges -- data frame of Tree edges of a rooted tree.
# #'   Format: columns are (1) character() "source" - source node id
# #'                       (2) character() "target" - target node id.
# #' @param mutations -- data frame (Optional) of Mutations occurring at each clone. Any additional field will be shown in the mutation table.
# #'   Format: columns are (1) character() "chrom" - chromosome number
# #'                       (2) numeric() "coord" - coordinate of mutation on chromosome
# #'                       (3) character() "clone_id" - clone id
# #'                       (4) character() "timepoint" - time point
# #'                       (5) numeric() "VAF" - variant allele frequency of the mutation in the corresponding timepoint.
# #' @param clone_colours -- data frame (Optional) of Clone ids and their corresponding colours
# #'   Format: columns are (1) character() "clone_id" - the clone ids
# #'                       (2) character() "colour" - the corresponding Hex colour for each clone id.
# #' @param xaxis_title -- String (Optional) of x-axis title. Default is "Time Point".
# #' @param yaxis_title -- String (Optional) of y-axis title. Default is "Clonal Prevalence".
# #' @param phylogeny_title -- String (Optional) of Legend phylogeny title. Default is "Clonal Phylogeny".
# #' @param alpha -- Number (Optional) of Alpha value for sweeps, range [0, 100].
# #' @param genotype_position -- String (Optional) of How to position the genotypes from ["centre", "stack", "space"]
# #'   "centre" -- genotypes are centred with respect to their ancestors
# #'   "stack" -- genotypes are stacked such that no genotype is split at any time point
# #'   "space" -- genotypes are stacked but with a bit of spacing at the bottom
# #' @param perturbations -- data frame (Optional) of any perturbations that occurred between two time points.
# #'   Format: columns are (1) character() "pert_name" - the perturbation name
# #'                       (2) character() "prev_tp" - the time point (as labelled in clonal prevalence data)
# #'                                                BEFORE perturbation.
# #' @param sort -- Boolean (Optional) of whether (TRUE) or not (FALSE) to vertically sort the genotypes by their emergence values (descending).
# #'                       Default is FALSE.
# #'                       Note that genotype sorting will always retain the phylogenetic hierarchy, and this parameter will only affect the ordering of siblings.
# #' @param show_warnings -- Boolean (Optional) of  Whether or not to show any warnings. Default is TRUE.
# #' @param width -- Number (Optional) of width of the plot. Minimum width is 450.
# #' @param height -- Number (Optional) of height of the plot. Minimum height with and without mutations is 500 and 260, respectively.
# #' @rdname helpers
# #' @return Returns the ready list of user input data for htmlwidget
processUserData <- function(clonal_prev,
                      tree_edges,
                      mutations,
                      clone_colours,
                      xaxis_title,
                      yaxis_title,
                      phylogeny_title,
                      alpha,
                      genotype_position,
                      perturbations,
                      sort,
                      show_warnings,
                      width,
                      height) {

  # ENSURE MINIMUM DIMENSIONS SATISFIED
  checkMinDims(mutations, height, width)

  # CHECK REQUIRED INPUTS ARE PRESENT
  checkRequiredInputs(clonal_prev, tree_edges)

  # ALPHA VALUE
  checkAlpha(alpha)

  # SORTED GENOTYPES
  if (!is.logical(sort)) {
    stop("Sort parameter must be a boolean.")
  }

  # CLONAL PREVALENCE DATA
  clonal_prev <- checkClonalPrev(clonal_prev)

  # TREE EDGES DATA
  tree_edges <- checkTreeEdges(tree_edges)

  # GENOTYPE POSITIONING
  checkGtypePositioning(genotype_position)

  # CHECK CLONE COLOURS
  checkCloneColours(clone_colours)

  # CHECK PERTURBATIONS
  perturbations <- checkPerts(perturbations)

  # MUTATIONS DATA
  mut_data <- getMutationsData(mutations, tree_edges, clonal_prev, show_warnings)
  mutation_info <- mut_data$mutation_info
  mutation_prevalences <- mut_data$mutation_prevalences
  if (is.data.frame(mutations)) {
    mutations_provided <- TRUE
  }
  else {
    mutations_provided <- FALSE
  }

  # REPLACE SPACES WITH UNDERSCORES
  spaces_replaced <- replaceSpaces(clonal_prev, tree_edges, clone_colours, mutation_info, mutations, mutation_prevalences)
  timepoint_map <- spaces_replaced$timepoint_map
  clone_id_map <- spaces_replaced$clone_id_map
  clonal_prev <- spaces_replaced$clonal_prev
  tree_edges <- spaces_replaced$tree_edges
  mutation_info <- spaces_replaced$mutation_info
  clone_colours <- spaces_replaced$clone_colours
  mutation_prevalences <- spaces_replaced$mutation_prevalences

  # forward options using x
  return(list(
    clonal_prev = jsonlite::toJSON(clonal_prev),
    gtype_tree_edges = jsonlite::toJSON(tree_edges),
    clone_cols = jsonlite::toJSON(clone_colours),
    mutations = jsonlite::toJSON(mutation_info),
    mutation_prevalences = jsonlite::toJSON(mutation_prevalences),
    mutations_provided=mutations_provided, # whether or not mutations are provided
    xaxis_title = as.character(xaxis_title),
    yaxis_title = as.character(yaxis_title),
    phylogeny_title = as.character(phylogeny_title),
    alpha = alpha,
    genotype_position = genotype_position,
    perturbations = jsonlite::toJSON(perturbations),
    sort_gtypes = sort,
    timepoint_map = jsonlite::toJSON(timepoint_map),
    clone_id_map = jsonlite::toJSON(clone_id_map)
  ))
}

# #' Function to check minimum dimensions
# #'
# #' @param mutations -- mutations provided by user
# #' @param height -- height provided by user
# #' @param width -- width provided by user
# #' @rdname helpers
# #' @return None
checkMinDims <- function(mutations, height, width) {

  # set height if not set by user
  if (is.null(height)) {
    if (!is.data.frame(mutations)) { # no mutations
      height = 260
    }
    else { # mutations
      height = 500
    }
  }

  # check height is big enough
  min_width = 450
  if (!is.data.frame(mutations)) { # no mutations
    min_height = 260
  }
  else { # mutations
    min_height = 500
  }

  if (height < min_height) {
    stop("Height must be greater than or equal to ", min_height, "px.")
  }
  if (width < min_width) {
    stop("Width must be greater than or equal to ", min_width, "px.")
  }
}

# #' Function to check required inputs are present
# #'
# #' @param clonal_prev -- clonal_prev provided by user
# #' @param tree_edges -- tree_edges provided by user
# #' @rdname helpers
# #' @return None
checkRequiredInputs <- function(clonal_prev, tree_edges) {

  if (missing(clonal_prev)) {
    stop("Clonal prevalence data frame must be provided.")
  }
  if (missing(tree_edges)) {
    stop("Tree edge data frame must be provided.")
  }
}

# #' check alpha value input is correct
# #'
# #' @param alpha -- alpha provided by user
# #' @rdname helpers
# #' @return None
checkAlpha <- function(alpha) {
  if (!is.numeric(alpha)) {
    stop("Alpha value must be numeric.")
  }

  if (alpha < 0 || alpha > 100) {
    stop("Alpha value must be between 0 and 100.")
  }
}

# #' check clonal_prev parameter data
# #'
# #' @param clonal_prev -- clonal prevalence provided by user
# #' @rdname helpers
# #' @return Clonal prevalence data after checkint it for column names and content types
checkClonalPrev <- function(clonal_prev) {

  # ensure column names are correct
  if (!("timepoint" %in% colnames(clonal_prev)) ||
      !("clone_id" %in% colnames(clonal_prev)) ||
      !("clonal_prev" %in% colnames(clonal_prev))) {
    stop("Clonal prevalence data frame must have the following column names: ",
        "\"timepoint\", \"clone_id\", \"clonal_prev\"")
  }

  # ensure data is of the correct type
  clonal_prev$timepoint <- as.character(clonal_prev$timepoint)
  clonal_prev$clone_id <- as.character(clonal_prev$clone_id)
  clonal_prev$clonal_prev <- as.numeric(as.character(clonal_prev$clonal_prev))

  return(clonal_prev)
}

# #' check tree_edges parameter data
# #'
# #' @param tree_edges -- tree edges provided by user
# #' @rdname helpers
# #' @return Tree edges data after checkint it for column names and content types
checkTreeEdges <- function(tree_edges) {

  # ensure column names are correct
  if (!("source" %in% colnames(tree_edges)) ||
      !("target" %in% colnames(tree_edges))) {
    stop("Tree edges data frame must have the following column names: ",
        "\"source\", \"target\"")
  }

  # ensure data is of the correct type
  tree_edges$source <- as.character(tree_edges$source)
  tree_edges$target <- as.character(tree_edges$target)

  # check for tree rootedness
  sources <- unique(tree_edges$source)
  targets <- unique(tree_edges$target)
  sources_for_iteration <- sources # because we will be changing the sources array over time
  for (i in 1:length(sources_for_iteration)) {
    cur_source <- sources_for_iteration[i]

    # if the source is a target, remove it from the sources list
    if (cur_source %in% targets) {
      sources <- sources[sources != cur_source]
    }
  }

  # if multiple roots are detected, throw error
  if (length(sources) > 1) {
    stop("Multiple roots detected in tree (",paste(sources,collapse=", "),
      ") - tree must have only one root.")
  }

  # if an edge is found whose source and target are equal, throw an error
  if (length(which(as.character(tree_edges$source) == as.character(tree_edges$target))) > 0) {
    stop("One of the tree edges has a source as its own target. Remove this edge.")
  }

  return(tree_edges)
}

# #' check genotype_position parameter
# #'
# #' @param genotype_position -- genotype_position provided by user
# #' @rdname helpers
# #' @return None
checkGtypePositioning <- function(genotype_position) {
  if (!(genotype_position %in% c("stack", "centre", "space"))) {
    stop("Genotype position must be one of c(\"stack\", \"centre\", \"space\")")
  }
}

# #' check clone_colours parameter
# #'
# #' @param clone_colours -- clone_colours provided by user
# #' @rdname helpers
# #' @return None
checkCloneColours <- function(clone_colours) {
  if (is.data.frame(clone_colours)) {

    # ensure column names are correct
    if (!("clone_id" %in% colnames(clone_colours)) ||
        !("colour" %in% colnames(clone_colours))) {
      stop("Node colour data frame must have the following column names: ",
          "\"clone_id\", \"colour\"")
    }
  }
}

# #' check perturbations parameter
# #'
# #' @param perturbations -- perturbations provided by user
# #' @rdname helpers
# #' @return Perturbations after checking them for content types and column names
checkPerts <- function(perturbations) {

  if (is.data.frame(perturbations)) {

    # ensure column names are correct
    if (!("pert_name" %in% colnames(perturbations)) ||
        !("prev_tp" %in% colnames(perturbations))) {
      stop("Perturbations data frame must have the following column names: ",
          "\"pert_name\", \"prev_tp\"")
    }

    # check that columns are of the correct type
    perturbations$pert_name <- as.character(perturbations$pert_name)
    perturbations$prev_tp <- as.character(perturbations$prev_tp)
  }

  return(perturbations)
}

# #' get mutation data
# #'
# #' @param mutations -- mutations data from user
# #' @param tree_edges -- tree edges data from user
# #' @param clonal_prev -- clonal prevalence data from user
# #' @param show_warnings -- show warnings
# #' @rdname helpers
# #' @return List of mutation information and mutation prevalences
getMutationsData <- function(mutations, tree_edges, clonal_prev, show_warnings) {

  if (is.data.frame(mutations)) {

    # ensure column names are correct
    if (!("chrom" %in% colnames(mutations)) ||
        !("coord" %in% colnames(mutations)) ||
        !("clone_id" %in% colnames(mutations)) ||
        !("timepoint" %in% colnames(mutations)) ||
        !("VAF" %in% colnames(mutations))) {
      stop("Mutations data frame must have the following column names: ",
          "\"chrom\", \"coord\", \"clone_id\", \"timepoint\", \"VAF\".")
    }

    # ensure data is of the correct type
    mutations$chrom <- toupper(as.character(mutations$chrom)) # upper case X & Y
    mutations$coord <- as.character(mutations$coord)
    mutations$timepoint <- as.character(mutations$timepoint)
    mutations$clone_id <- as.character(mutations$clone_id)
    mutations$VAF <- as.numeric(as.character(mutations$VAF))

    # check for optional info, and ensure data of correct type
    extra_columns <- colnames(mutations)[which(!(colnames(mutations) %in% c("chrom", "coord", "clone_id", "timepoint", "VAF")))]
    mutations <- data.frame(lapply(mutations, as.character), stringsAsFactors=FALSE)

    # check that all CLONE IDS in the mutations data are present in the tree data
    mutations_clone_ids <- unique(mutations$clone_id)
    tree_edges_clone_ids <- c(unique(tree_edges$source), unique(tree_edges$target))
    clone_ids_missing_from_tree_edges_data <- setdiff(mutations_clone_ids, tree_edges_clone_ids)
    if (length(clone_ids_missing_from_tree_edges_data) > 0) {
      stop("The following clone ID(s) are present in the mutations data but ",
        "are missing from the tree edges data: ",
        paste(clone_ids_missing_from_tree_edges_data, collapse=", "), ".")
    }

    # check that all TIMEPOINTS in the mutations data are present in the clonal prev data
    mutations_tps <- unique(mutations$timepoint)
    clonal_prev_tps <- unique(clonal_prev$timepoint)
    tps_missing_from_clonal_prev_data <- setdiff(mutations_tps, clonal_prev_tps)
    if (length(tps_missing_from_clonal_prev_data) > 0) {
      stop("The following timepoint(s) are present in the mutations data but ",
        "are missing from the clonal prevalence data: ",
        paste(tps_missing_from_clonal_prev_data, collapse=", "), ".")
    }

    # create a location column, combining the chromosome and the coordinate
    mutations$location <- apply(mutations[, c("chrom","coord")], 1 , paste, collapse = ":")

    # coordinate is now a number
    mutations$coord <- as.numeric(as.character(mutations$coord))

    # check X & Y chromosomes are labelled "X" and "Y", not "23", "24"
    num_23 <- mutations[which(mutations$chrom == "23"),]
    if (nrow(num_23) > 0) {
      stop("Chromosome numbered \"23\" was detected in mutations data frame - X and Y chromosomes ",
        "must be labelled \"X\" and \"Y\".")
    }


    # get list of clones in the phylogeny
    clones_in_phylo <- unique(c(tree_edges$source, tree_edges$target))

    # keep only those mutations whose clone ids are present in the phylogeny
    mutations <- mutations[which(mutations$clone_id %in% clones_in_phylo),]

    # MUTATION PREVALENCES DATA

    mutation_prevalences <- mutations

    # keep only those mutations whose clone ids are present in the phylogeny
    mutation_prevalences <- mutation_prevalences[which(mutation_prevalences$clone_id %in% clones_in_phylo),]

    # warn if more than 10,000 rows in data that the visualization may be slow
    if (nrow(mutation_prevalences) > 10000 && show_warnings) {
      log2_print(paste("[WARNING] Number of rows in mutations data exceeds 10,000. ",
        "Resultantly, visualization may be slow. ",
        "It is recommended to filter the data to a smaller set of mutations.", sep=""))
    }

    # compress results
    prevs_split <- split(mutation_prevalences, f = mutation_prevalences$location)

    # reduce the size of the data frame in each list
    prevs_split_small <- lapply(prevs_split, function(prevs) {
      return(prevs[,c("timepoint", "VAF")])
    })


    # MUTATION INFO
    mutation_info <- unique(mutations[,c("chrom","coord","clone_id",extra_columns)])
  }
  else {
    prevs_split_small <- "NA"
    mutation_info <- "NA"
  }

  return(list("mutation_info"=mutation_info, "mutation_prevalences"=prevs_split_small))
}

# #' function to replace spaces with underscores in all data frames & keep maps of original names to space-replaced names
# #' @param clonal_prev -- clonal_prev data from user
# #' @param tree_edges -- tree edges data from user
# #' @param clone_colours -- clone_colours data from user
# #' @param mutation_info -- processed mutation_info
# #' @param mutations -- mutations data from user
# #' @param mutation_prevalences -- mutation_prevalences data from user
# #' @rdname helpers
# #' @return List of data frames with spaces replaced
replaceSpaces <- function(clonal_prev, tree_edges, clone_colours, mutation_info, mutations, mutation_prevalences) {

  # create map of original sample ids to space-replaced sample ids
  timepoint_map <- data.frame(original_timepoint = unique(clonal_prev$timepoint), stringsAsFactors=FALSE)
  timepoint_map$space_replaced_timepoint <- stringr::str_replace_all(timepoint_map$original_timepoint,"\\s+","_")

  # create map of original clone ids to space-replaced clone ids
  clone_id_map <- data.frame(original_clone_id = unique(c(tree_edges$source, tree_edges$target)), stringsAsFactors=FALSE)
  clone_id_map$space_replaced_clone_id <- stringr::str_replace_all(clone_id_map$original_clone_id,"\\s+","_")

  # replace spaces with underscores
  # --> timepoints
  clonal_prev$timepoint <- stringr::str_replace_all(clonal_prev$timepoint,"\\s+","_")
  if (is.data.frame(mutations)) {
    mutation_prevalences <- lapply(mutation_prevalences, function(prevs) {
      prevs$timepoint <- stringr::str_replace_all(prevs$timepoint,"\\s+","_")
      return(prevs)
    })
  }
  # --> clone ids
  clonal_prev$clone_id <- stringr::str_replace_all(clonal_prev$clone_id,"\\s+","_")
  tree_edges$source <- stringr::str_replace_all(tree_edges$source,"\\s+","_")
  tree_edges$target <- stringr::str_replace_all(tree_edges$target,"\\s+","_")
  if (is.data.frame(clone_colours)) {
    clone_colours$clone_id <- stringr::str_replace_all(clone_colours$clone_id,"\\s+","_")
  }
  if (is.data.frame(mutations)) {
    mutation_info$clone_id <- stringr::str_replace_all(mutation_info$clone_id,"\\s+","_")
  }

  return(list("timepoint_map"=timepoint_map,
              "clone_id_map"=clone_id_map,
              "clonal_prev"=clonal_prev,
              "tree_edges"=tree_edges,
              "mutation_info"=mutation_info,
              "clone_colours"=clone_colours,
              "mutation_prevalences"=mutation_prevalences))
}
BIMIB-DISCo/LACE documentation built on Nov. 1, 2024, 11:06 p.m.