Nothing
#' Predicting drug sensitivity with binary drug-target interaction data using two.sided TIMMA model
#'
#' A function to predict the drug sensitivity with binary drug-target interaction data using the
#' two.sided TIMMA model
#'
#' @param drug_target_profile the drug-target interaction data. See \code{\link{timma}}.
#' @param y_actual a drug sensitivity vector.
#' @param loo a logical value indicating whether to use the leave-one-out cross-validation in the model
#' selection process. By default, loo = TRUE.
#' @return A list containing the following components:
#' \item{dummy}{the predicted efficacy matrix}
#' \item{error}{the prediction errors}
#' \item{prediction}{predicted drug sensitivity}
#' The difference between \code{\link{timmaModel}} and \code{\link{timmaBinary}} is \code{\link{timmaModel}}
#' returns the predicted efficacy matrix of all possible target combinations while \code{\link{timmaBinary}}
#' not.
#' @author Liye He \email{liye.he@@helsinki.fi}
#' @examples
#' data(tyner_interaction_binary)
#' data(tyner_sensitivity)
#' results<-timmaModel1(tyner_interaction_binary[, 1:6], tyner_sensitivity[,1])
timmaModel1 <- function(drug_target_profile, y_actual, loo = TRUE) {
# parameter 1: drug_target_profile, drug with selected target profile parameter 2: y_actual, the actual
# efficacy for the drugs parameter 3: loo, flag for applying Leave-one-out or not
# drug number
drug_number <- nrow(as.matrix(drug_target_profile))
# number of targets in the cancer specific target set
target_number <- ncol(as.matrix(drug_target_profile))
# get all possible gray code decimal
dec_graycode <- graycode2(target_number)
rows <- dec_graycode[[1]]
cols <- dec_graycode[[2]]
IM_d <- array(NA, dim = c(rows, cols, drug_number))
IM_subset <- array(Inf, dim=c(rows, cols, drug_number))
# IM_subset <- arrayinfcpp(rows, cols, drug_number)
IM_superset <- array(-Inf, dim=c(rows, cols, drug_number))
# IM_superset <- arrayminfcpp(rows, cols, drug_number)
# index for the drug
drug_index <- rep(0, drug_number)
drug_target_profile <- matrix(drug_target_profile, nrow = drug_number, ncol = target_number)
for (i in 1:drug_number) {
# get the decimal
dec <- strtoi(paste(drug_target_profile[i, ], collapse = ""), base = 2)
drug_index[i] <- which(dec_graycode[[3]] == dec)
temp_matrix <- IM_d[, , i]
temp_matrix[drug_index[i]] <- 1 * y_actual[i]
IM_d[, , i] <- temp_matrix
# get the binary set: superset and subset
bin_set <- binarySet(drug_target_profile[i, ])
# ismember function R version: match
subset_index <- match(bin_set$subset, dec_graycode[[3]])
# cat('the temp_index for ', i, ':', temp_index,'\n')
subset_matrix <- IM_subset[, , i]
subset_matrix[subset_index] <- 1 * y_actual[i]
IM_subset[, , i] <- subset_matrix
superset_index <- match(bin_set$superset, dec_graycode[[3]])
superset_matrix <- IM_superset[, , i]
superset_matrix[superset_index] <- 1 * y_actual[i]
IM_superset[, , i] <- superset_matrix
}
# M_d<-apply(IM_d, MARGIN=c(1, 2), sum, na.rm=TRUE)/apply(IM_d,MARGIN=c(1,2), function(x){sum(!is.na(x))})
M_d <- sumcpp(IM_d, rows, cols, drug_number)
# min_subset<-apply(IM_subset, c(1,2), min) min_index<-apply(IM_subset, c(1,2), which.min)
# max_superset<-apply(IM_superset, c(1,2), max) max_index<-apply(IM_superset, c(1,2), which.max)
maxval <- maxcpp(IM_superset, rows, cols, drug_number)
minval <- mincpp(IM_subset, rows, cols, drug_number)
min_subset <- minval$min
min_index <- minval$min_idx
max_superset <- maxval$max
max_index <- maxval$max_idx
# find cell which needs maximization averaging
cell <- is.nan(M_d) & is.finite(max_superset) # is.nan or is.na????????
cell <- which(cell == TRUE)
if (length(cell) != 0) {
for (i in cell) {
row <- ((i - 1)%%rows) + 1
col <- floor((i - 1)/rows) + 1
# the drug sets that are the subset of the cell
drug_sub_cell <- !is.infinite(IM_superset[row, col, ])
# the drug index which achieves max sensitivity
index <- max_index[i]
# the correspongding gray code for the drug with max sensitivity
index_graycode <- which(IM_d[, , index] >= 0, arr.ind = TRUE)
# find the supersets of S(index,:) in S that has smaller sensitivity
supersets_small <- IM_subset[index_graycode[1], index_graycode[2], ] < max_superset[i]
# find common item with drug_sub_cell and supersets_small
common_cell <- which(drug_sub_cell & supersets_small)
# cat(common_cell,'\n') max averaging
if (length(common_cell) != 0) {
k <- 1
for (j in common_cell) {
max_superset[i] <- (max_superset[i] * k + y_actual[j])/(k + 1)
k <- k + 1
}
}
}
}
cell2 <- is.nan(M_d) & is.finite(min_subset)
cell2 <- which(cell2 == TRUE)
if (length(cell2) != 0) {
for (i in cell2) {
row <- ((i - 1)%%rows) + 1
col <- floor((i - 1)/rows) + 1
# the drug sets that are the superset of the cell
drug_sub_cell <- !is.infinite(IM_subset[row, col, ])
# the drug index which achieves min sensitivity
index <- min_index[i]
# the correspongding gray code for the drug with max sensitivity
index_graycode <- which(IM_d[, , index] >= 0, arr.ind = TRUE)
# find the subsets of S(index,:) in S that has higher sensitivity
subsets_small <- IM_superset[index_graycode[1], index_graycode[2], ] > min_subset[i]
# find common item with drug_sub_cell and supersets_small
if (length(subsets_small) == 0) {
common_cells <- vector("numeric")
} else {
common_cell2 <- which(drug_sub_cell & subsets_small)
}
if (length(common_cell2) != 0) {
# min averaging
k <- 1
for (j in common_cell2) {
min_subset[i] <- (min_subset[i] * k + y_actual[j])/(k + 1)
k <- k + 1
}
}
}
}
M <- M_d
M[cell] <- (max_superset[cell] + 1)/2
M[cell2] <- (min_subset[cell2] + 0)/2
# cels that not only have lower boundery and also have upper boundary
average_index <- intersect(cell, cell2)
M[average_index] <- (max_superset[average_index] + min_subset[average_index])/2
# predicted error
error_predict <- rep(NA, drug_number)
# predicted efficacy
pred <- rep(NA, drug_number)
if (loo == FALSE) {
pred <- M[drug_index]
error_predict <- abs(pred - y_actual)
} else {
for (i in 1:drug_number) {
# remove drug i IM_d_loo<-IM_d IM_subset_loo<-IM_subset IM_superset_loo<-IM_superset
# y_actual_loo<-y_actual cat('drug:',i,'\n') get the dim info
dim_IMd <- dim(IM_d)
dim_IMd[3] <- dim_IMd[3] - 1
IM_d_loo <- array(IM_d[, , -i], dim = dim_IMd)
IM_subset_loo<-array(IM_subset[,,-i], dim=dim_IMd)
IM_superset_loo<-array(IM_superset[,,-i], dim=dim_IMd)
y_actual_loo <- y_actual[-i]
# M_d_loo<-apply(IM_d_loo, MARGIN=c(1, 2), sum, na.rm=TRUE)/apply(IM_d_loo,MARGIN=c(1,2),
# function(x){sum(!is.na(x))})
M_d_loo <- sumcpp(IM_d_loo, dim_IMd[1], dim_IMd[2], dim_IMd[3])
M_loo <- M_d_loo
# min_subset_loo<-apply(IM_subset_loo, c(1,2), min) min_index_loo<-apply(IM_subset_loo, c(1,2), which.min)
# max_superset_loo<-apply(IM_superset_loo, c(1,2), max) max_index_loo<-apply(IM_superset_loo, c(1,2),
# which.max)
maxval_loo <- maxcpp(IM_superset_loo, dim_IMd[1], dim_IMd[2], dim_IMd[3])
max_superset_loo <- maxval_loo$max
max_index_loo <- maxval_loo$max_idx
minval_loo <- mincpp(IM_subset_loo, dim_IMd[1], dim_IMd[2], dim_IMd[3])
min_subset_loo <- minval_loo$min
min_index_loo <- minval_loo$min_idx
cell <- is.nan(M_d_loo) & is.finite(max_superset_loo)
cell <- which(cell == TRUE)
cell2 <- is.nan(M_d_loo) & is.finite(min_subset_loo)
cell2 <- which(cell2 == TRUE)
# does the removed drug need max averaging
j_max <- which(cell == drug_index[i])
# does the removed drug need min averaging
j_min <- which(cell2 == drug_index[i])
if (length(j_max) != 0 && length(j_min) == 0) {
# index for the cell
cell_index <- cell[j_max]
row <- ((cell_index - 1)%%rows) + 1
col <- floor((cell_index - 1)/rows) + 1
drug_sub_cell <- !is.infinite(IM_superset_loo[row, col, ])
# the drug index which achieves max sensitivity
index <- max_index_loo[cell_index]
# the correspongding gray code for the drug with max sensitivity
index_graycode <- which(IM_d_loo[, , index] >= 0, arr.ind = TRUE)
# find the supersets of S(index,:) in S that has smaller sensitivity
supersets_small <- IM_subset_loo[index_graycode[1], index_graycode[2], ] < max_superset_loo[cell_index]
# find common item with drug_sub_cell and supersets_small
common_cell <- which(drug_sub_cell & supersets_small)
# cat(common_cell,'\n') max averaging
if (length(common_cell) != 0) {
k <- 1
for (j in common_cell) {
max_superset_loo[cell_index] <- (max_superset_loo[cell_index] * k + y_actual_loo[j])/(k +
1)
k <- k + 1
}
}
pred[i] <- (max_superset_loo[drug_index[i]] + 1)/2
error_predict[i] <- abs(pred[i] - y_actual[i])
} else if (length(j_max) == 0 && length(j_min) != 0) {
cell2_index <- cell2[j_min]
row <- ((cell2_index - 1)%%rows) + 1
col <- floor((cell2_index - 1)/rows) + 1
drug_sub_cell <- !is.infinite(IM_subset_loo[row, col, ])
index <- min_index_loo[cell2_index]
# the correspongding gray code for the drug with max sensitivity
index_graycode <- which(IM_d_loo[, , index] >= 0, arr.ind = TRUE)
# find the supersets of S(index,:) in S that has smaller sensitivity
supersets_small <- IM_superset_loo[index_graycode[1], index_graycode[2], ] > min_subset_loo[cell2_index]
# find common item with drug_sub_cell and supersets_small
common_cell <- which(drug_sub_cell & supersets_small)
if (length(common_cell) != 0) {
# max averaging
k <- 1
for (j in common_cell) {
min_subset_loo[cell2_index] <- (min_subset_loo[cell2_index] * k + y_actual_loo[j])/(k +
1)
k <- k + 1
}
}
pred[i] <- (min_subset_loo[drug_index[i]] + 0)/2
error_predict[i] <- abs(pred[i] - y_actual[i])
} else if (length(j_max) != 0 && length(j_min) != 0) {
# index for the cell
cell_index <- cell[j_max]
row <- ((cell_index - 1)%%rows) + 1
col <- floor((cell_index - 1)/rows) + 1
drug_sub_cell <- !is.infinite(IM_superset_loo[row, col, ])
# the drug index which achieves max sensitivity
index <- max_index_loo[cell_index]
# the correspongding gray code for the drug with max sensitivity
index_graycode <- which(IM_d_loo[, , index] >= 0, arr.ind = TRUE)
# find the supersets of S(index,:) in S that has smaller sensitivity
supersets_small <- IM_subset_loo[index_graycode[1], index_graycode[2], ] < max_superset_loo[cell_index]
# find common item with drug_sub_cell and supersets_small
common_cell <- which(drug_sub_cell & supersets_small)
if (length(common_cell) != 0) {
# max averaging
k <- 1
for (j in common_cell) {
max_superset_loo[cell_index] <- (max_superset_loo[cell_index] * k + y_actual_loo[j])/(k +
1)
k <- k + 1
}
}
cell2_index <- cell2[j_min]
row <- ((cell2_index - 1)%%rows) + 1
col <- floor((cell2_index - 1)/rows) + 1
drug_sub_cell <- !is.infinite(IM_subset_loo[row, col, ])
index <- min_index_loo[cell2_index]
# the correspongding gray code for the drug with max sensitivity
index_graycode <- which(IM_d_loo[, , index] >= 0, arr.ind = TRUE)
# find the supersets of S(index,:) in S that has smaller sensitivity
supersets_small <- IM_superset_loo[index_graycode[1], index_graycode[2], ] > min_subset_loo[cell2_index]
# find common item with drug_sub_cell and supersets_small
common_cell <- which(drug_sub_cell & supersets_small)
if (length(common_cell) != 0) {
# max averaging
k <- 1
for (j in common_cell) {
min_subset_loo[cell2_index] <- (min_subset_loo[cell2_index] * k + y_actual_loo[j])/(k +
1)
k <- k + 1
}
}
pred[i] <- (max_superset_loo[drug_index[i]] + min_subset_loo[drug_index[i]])/2
error_predict[i] <- abs(pred[i] - y_actual[i])
} else {
# length(j_max)==0 && length(j_min)==0
pred[i] <- M_loo[drug_index[i]]
error_predict[i] <- abs(pred[i] - y_actual[i])
}
}
}
return(list(dummy = M, error = error_predict, prediction = pred))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.