Nothing
#' @rdname singleRmodels
#' @importFrom lamW lambertW0
#' @export
ztoipoisson <- function(lambdaLink = c("log", "neglog"),
omegaLink = c("logit", "cloglog", "probit"),
...) {
if (missing(lambdaLink)) lambdaLink <- "log"
if (missing(omegaLink)) omegaLink <- "logit"
links <- list()
attr(links, "linkNames") <- c(lambdaLink, omegaLink)
lambdaLink <- switch(lambdaLink,
"log" = singleRinternallogLink,
"neglog" = singleRinternalneglogLink
)
omegaLink <- switch(omegaLink,
"logit" = singleRinternallogitLink,
"cloglog" = singleRinternalcloglogLink,
"probit" = singleRinternalprobitLink
)
links[1:2] <- c(lambdaLink, omegaLink)
mu.eta <- function(eta, type = "trunc", deriv = FALSE, ...) {
omega <- omegaLink(eta[, 2], inverse = TRUE)
lambda <- lambdaLink(eta[, 1], inverse = TRUE)
if (!deriv) {
switch (type,
"nontrunc" = omega * (1 - exp(-lambda)) + lambda * (1 - omega),
"trunc" = omega + (1 - omega) * lambda / (1 - exp(-lambda))
)
} else {
switch (type,
"nontrunc" = {
matrix(c(
1 + omega * exp(-lambda) - omega,
1 - lambda - exp(-lambda)
) * c(
lambdaLink(eta[, 1], inverse = TRUE, deriv = 1),
omegaLink(eta[, 2], inverse = TRUE, deriv = 1)
), ncol = 2)
},
"trunc" = {
matrix(c(
(1 - omega) * exp(lambda) * (exp(lambda) - lambda - 1) /
(exp(lambda) - 1) ^ 2,
1 - lambda / (1 - exp(-lambda))
) * c(
lambdaLink(eta[, 1], inverse = TRUE, deriv = 1),
omegaLink(eta[, 2], inverse = TRUE, deriv = 1)
), ncol = 2)
}
)
}
}
variance <- function(eta, type = "nontrunc", ...) {
omega <- omegaLink(eta[, 2], inverse = TRUE)
lambda <- lambdaLink(eta[, 1], inverse = TRUE)
switch (type,
"nontrunc" = omega * (1 - exp(-lambda)) + (1 - omega) * (lambda + lambda ^ 2),
"trunc" = omega + (1 - omega) * (lambda ^ 2 + lambda) / (1 - exp(-lambda))
) - mu.eta(type = type, eta = eta) ^ 2
}
Wfun <- function(prior, y, eta, ...) {
omega <- omegaLink(eta[, 2], inverse = TRUE)
lambda <- lambdaLink(eta[, 1], inverse = TRUE)
z <- omega + (1 - omega) * lambda / (exp(lambda) - 1)
G00 <- prior * (-(z * (1 - lambda / (exp(lambda) - 1)) ^ 2) /
(omega + (lambda * (1 - omega)) / (exp(lambda) - 1)) ^ 2 -
(1 - z) / (1 - omega) ^ 2) * omegaLink(eta[, 2], inverse = TRUE, deriv = 1) ^ 2
# mixed derivative
G01 <- prior * (((z * ((lambda - 1) * exp(lambda) + 1)) /
(omega * exp(lambda) + (1 - omega) * lambda - omega) ^ 2) *
lambdaLink(eta[, 1], inverse = TRUE, deriv = 1) *
omegaLink(eta[, 2], inverse = TRUE, deriv = 1))
#expected value of (1-I(y = 1))*y
XXXX <- (1 - omega) * lambda
G11 <- prior * lambdaLink(eta[, 1], inverse = TRUE, deriv = 1) ^ 2 *
((1 - z) * (exp(2 * lambda) / (exp(lambda) - 1) ^ 2 - exp(lambda) / (exp(lambda) - 1))-
XXXX / lambda ^ 2 + (z * ((2 * (1 - omega) * lambda * exp(2 * lambda)) / (exp(lambda) - 1) ^ 3-
((1 - omega) * lambda * exp(lambda)) / (exp(lambda) - 1) ^ 2-
(2 * (1 - omega) * exp(lambda)) / (exp(lambda) - 1) ^ 2)) /
(((1 - omega) * lambda) / (exp(lambda) - 1) + omega) -
(z * ((1 - omega) / (exp(lambda) - 1) - ((1 - omega) * lambda * exp(lambda))/
(exp(lambda) - 1) ^ 2) ^ 2) / (((1 - omega) * lambda) / (exp(lambda) - 1) + omega) ^ 2)
matrix(
-c(G11, # lambda
G01, # mixed
G01, # mixed
G00 # omega
),
dimnames = list(rownames(eta), c("lambda", "mixed", "mixed", "omega")),
ncol = 4
)
}
funcZ <- function(eta, weight, y, prior, ...) {
omega <- omegaLink(eta[, 2], inverse = TRUE)
lambda <- lambdaLink(eta[, 1], inverse = TRUE)
z <- ifelse(y == 1, y, 0)
weight <- weight / prior
G0 <- (z * (1 - lambda / (exp(lambda) - 1))) / (omega + (lambda * (1 - omega)) / (exp(lambda) - 1)) - (1 - z) / (1 - omega)
G1 <- ((1 - z) * (y / lambda - exp(lambda) / (exp(lambda) - 1)) +
(z * ((1 - omega) / (exp(lambda) - 1) - ((1 - omega) * lambda * exp(lambda)) /
(exp(lambda) - 1) ^ 2)) / (((1 - omega) * lambda) / (exp(lambda) - 1) + omega))
G1 <- G1 * lambdaLink(eta[, 1], inverse = TRUE, deriv = 1)
G0 <- G0 * omegaLink(eta[, 2], inverse = TRUE, deriv = 1)
uMatrix <- matrix(c(G1, G0), ncol = 2)
weight <- lapply(X = 1:nrow(weight), FUN = function (x) {
matrix(as.numeric(weight[x, ]), ncol = 2)
})
pseudoResid <- sapply(X = 1:length(weight), FUN = function (x) {
xx <- solve(weight[[x]])
xx %*% uMatrix[x, ]
})
pseudoResid <- t(pseudoResid)
dimnames(pseudoResid) <- dimnames(eta)
pseudoResid
}
minusLogLike <- function(y, X,
weight = 1,
NbyK = FALSE,
vectorDer = FALSE,
deriv = 0,
offset,
...) {
y <- as.numeric(y)
if (is.null(weight)) {
weight <- 1
}
if (missing(offset)) {
offset <- cbind(rep(0, NROW(X) / 2), rep(0, NROW(X) / 2))
}
z <- as.numeric(y == 1)
if (!(deriv %in% c(0, 1, 2)))
stop("Only score function and derivatives up to 2 are supported.")
# to make it conform to how switch in R works, i.e. indexing begins with 1
deriv <- deriv + 1
switch (deriv,
function(beta) {
eta <- matrix(as.matrix(X) %*% beta, ncol = 2) + offset
omega <- omegaLink(eta[, 2], inverse = TRUE)
lambda <- lambdaLink(eta[, 1], inverse = TRUE)
-sum(weight * (-log(1 + exp(eta[, 2])) + z * log(exp(eta[, 2]) + lambda / (exp(lambda) - 1)) +
(1 - z) * (y * log(lambda) - log(exp(lambda) - 1) - lgamma(y + 1))))
},
function(beta) {
eta <- matrix(as.matrix(X) %*% beta, ncol = 2) + offset
omega <- omegaLink(eta[, 2], inverse = TRUE)
lambda <- lambdaLink(eta[, 1], inverse = TRUE)
G0 <- (z * (1 - lambda / (exp(lambda) - 1))) / (omega + (lambda * (1 - omega)) / (exp(lambda) - 1)) - (1 - z) / (1 - omega)
G1 <- ((1 - z) * (y / lambda - exp(lambda) / (exp(lambda) - 1)) +
(z * ((1 - omega) / (exp(lambda) - 1) - ((1 - omega) * lambda * exp(lambda)) /
(exp(lambda) - 1) ^ 2)) / (((1 - omega) * lambda) / (exp(lambda) - 1) + omega))
G1 <- G1 * weight * lambdaLink(eta[, 1], inverse = TRUE, deriv = 1)
G0 <- G0 * weight * omegaLink(eta[, 2], inverse = TRUE, deriv = 1)
if (NbyK) {
XX <- 1:(attr(X, "hwm")[1])
return(cbind(as.data.frame(X[1:nrow(eta), XX]) * G1, as.data.frame(X[-(1:nrow(eta)), -XX]) * G0))
}
if (vectorDer) {
return(cbind(G1, G0))
}
as.numeric(c(G1, G0) %*% X)
},
function (beta) {
lambdaPredNumber <- attr(X, "hwm")[1]
eta <- matrix(as.matrix(X) %*% beta, ncol = 2) + offset
omega <- omegaLink(eta[, 2], inverse = TRUE)
lambda <- lambdaLink(eta[, 1], inverse = TRUE)
res <- matrix(nrow = length(beta), ncol = length(beta),
dimnames = list(names(beta), names(beta)))
# omega^2 derivative
domega <- (z * (1 - lambda / (exp(lambda) - 1))) /
(omega + (lambda * (1 - omega)) / (exp(lambda) - 1)) -
(1 - z) / (1 - omega)
G00 <- -(z * (1 - lambda / (exp(lambda) - 1)) ^ 2) /
(omega + (lambda * (1 - omega)) / (exp(lambda) - 1)) ^ 2 -
(1 - z) / (1 - omega) ^ 2
G00 <- t(as.data.frame(X[-(1:(nrow(X) / 2)), -(1:lambdaPredNumber)] *
(G00 * (omegaLink(eta[, 2], inverse = TRUE, deriv = 1) ^ 2) +
domega * omegaLink(eta[, 2], inverse = TRUE, deriv = 2)) * weight)) %*%
as.matrix(X[-(1:(nrow(X) / 2)), -(1:lambdaPredNumber)])
# mixed derivative
G01 <- ((z * ((lambda - 1) * exp(lambda) + 1)) /
(omega * exp(lambda) + (1 - omega) * lambda - omega) ^ 2)
G01 <- t(as.data.frame(X[1:(nrow(X) / 2), 1:lambdaPredNumber]) *
G01 * lambdaLink(eta[, 1], inverse = TRUE, deriv = 1) *
omegaLink(eta[, 2], inverse = TRUE, deriv = 1) * weight) %*%
as.matrix(X[-(1:(nrow(X) / 2)), -(1:lambdaPredNumber)])
# lambda^2 derivative
G11 <- ((1 - z) * (exp(2 * lambda) / (exp(lambda) - 1) ^ 2-
exp(lambda) / (exp(lambda) - 1) - y / lambda ^ 2) +
(z * ((2 * (1 - omega) * lambda * exp(2 * lambda)) / (exp(lambda) - 1) ^ 3-
((1 - omega) * lambda * exp(lambda)) / (exp(lambda) - 1) ^ 2 -
(2 * (1 - omega) * exp(lambda)) / (exp(lambda) - 1) ^ 2)) /
(((1 - omega) * lambda) / (exp(lambda) - 1) + omega) -
(z * ((1 - omega) /(exp(lambda) - 1) - ((1 - omega) * lambda * exp(lambda)) /
(exp(lambda) - 1) ^ 2) ^ 2) / (((1 - omega) * lambda) / (exp(lambda) - 1) + omega) ^ 2)
dlambda <- ((1 - z) * (y / lambda - exp(lambda) / (exp(lambda) - 1)) +
(z * ((1 - omega) / (exp(lambda) - 1) - ((1 - omega) * lambda * exp(lambda)) /
(exp(lambda) - 1) ^ 2)) / (((1 - omega) * lambda) / (exp(lambda) - 1) + omega))
G11 <- t(as.data.frame(X[1:(nrow(X) / 2), 1:lambdaPredNumber] *
(G11 * (lambdaLink(eta[, 1], inverse = TRUE, deriv = 1) ^ 2) +
dlambda * lambdaLink(eta[, 1], inverse = TRUE, deriv = 2)) * weight)) %*%
X[1:(nrow(X) / 2), 1:lambdaPredNumber]
res[-(1:lambdaPredNumber), -(1:lambdaPredNumber)] <- G00
res[1:lambdaPredNumber, 1:lambdaPredNumber] <- G11
res[1:lambdaPredNumber, -(1:lambdaPredNumber)] <- t(G01)
res[-(1:lambdaPredNumber), 1:lambdaPredNumber] <- G01
res
}
)
}
validmu <- function(mu) {
(sum(!is.finite(mu)) == 0) && all(0 < mu)
}
devResids <- function(y, eta, wt, ...) {
omega <- omegaLink(eta[, 2], inverse = TRUE)
lambda <- lambdaLink(eta[, 1], inverse = TRUE)
mu <- mu.eta(eta = eta)
idealLambda <- tryCatch(
expr = {
suppressWarnings(
ifelse(y > 1, lamW::lambertW0(-y * exp(-y)) + y, 0)
)
},
error = function (e) {
warning("Deviance residuals could not have been computed and zero vector will be returned instead.", call. = FALSE)
NULL
}
)
if (is.null(idealLambda)) {
return(rep(0, length(y)))
}
diff <- ifelse(
y == 1,
-(log(omega + (1 - omega) * lambda / (exp(lambda) - 1))),
y * (log(idealLambda) - log(lambda)) + log((exp(lambda) - 1) / (exp(idealLambda) - 1)) - log(1 - omega)
)
if (any(diff < 0)) {
warning(paste0(
"Some of differences between log likelihood in sautrated model",
" and fitted model were positive which indicates either:\n",
"(1): A very good model fitt or\n",
"(2): Incorrect computation of saturated model",
"\nDouble check deviance before proceeding"
))
diff[diff < 0] <- 0
}
sign(y - mu) * sqrt(2 * wt * diff)
}
pointEst <- function (pw, eta, contr = FALSE, ...) {
lambda <- lambdaLink(eta[, 1], inverse = TRUE)
N <- pw / (1 - exp(-lambda))
if(!contr) {
N <- sum(N)
}
N
}
popVar <- function (pw, eta, cov, Xvlm, ...) {
omega <- omegaLink(eta[, 2], inverse = TRUE)
lambda <- lambdaLink(eta[, 1], inverse = TRUE)
# w.r to omega
bigTheta1 <- rep(0, nrow(eta))
# w.r to lambda
bigTheta2 <- pw * (exp(lambda) / (exp(lambda) - 1) ^ 2)
# w.r to lambda
bigTheta2 <- bigTheta2 * lambdaLink(eta[, 1], inverse = TRUE, deriv = 1)
bigTheta <- t(c(bigTheta2, bigTheta1) %*% Xvlm)
f1 <- t(bigTheta) %*% as.matrix(cov) %*% bigTheta
f2 <- sum(pw * exp(-lambda) / (1 - exp(-lambda)) ^ 2)
f1 + f2
}
dFun <- function (x, eta, type = c("trunc", "nontrunc")) {
if (missing(type)) type <- "trunc"
omega <- omegaLink(eta[, 2], inverse = TRUE)
lambda <- lambdaLink(eta[, 1], inverse = TRUE)
switch (type,
"trunc" = {
(1 - omega) * (lambda ^ x) / (factorial(x) * (exp(lambda) - 1)) +
omega * as.numeric(x == 1)
},
"nontrunc" = {
stats::dpois(x = x, lambda = lambda) *
(as.numeric(x == 0) + as.numeric(x > 0) * (1 - omega)) +
omega * (1 - exp(-lambda)) * as.numeric(x == 1)
}
)
}
simulate <- function(n, eta, lower = 0, upper = Inf) {
omega <- omegaLink(eta[, 2], inverse = TRUE)
lambda <- lambdaLink(eta[, 1], inverse = TRUE)
CDF <- function(x) {
ifelse(x == Inf, 1,
ifelse(x < 0, 0,
ifelse(x < 1, exp(-lambda),
exp(-lambda) + omega * (1 - exp(-lambda)) +
(1 - omega) * (stats::ppois(x, lambda) - exp(-lambda)))))
}
lb <- CDF(lower)
ub <- CDF(upper)
p_u <- stats::runif(n, lb, ub)
sims <- rep(0, n)
cond <- CDF(sims) <= p_u
while (any(cond)) {
sims[cond] <- sims[cond] + 1
cond <- CDF(sims) <= p_u
}
sims
}
getStart <- expression(
if (method == "IRLS") {
etaStart <- cbind(
pmin(family$links[[1]](observed), family$links[[1]](12)),
(sizeObserved * (observed == 1) + .5) / (sizeObserved * sum(observed == 1) + 1)
) + offset
} else if (method == "optim") {
init <- c(
family$links[[1]](weighted.mean(observed, priorWeights)),
family$links[[2]](weighted.mean(observed == 1, priorWeights) + .01)
)
if (attr(terms, "intercept")) {
coefStart <- c(init[1], rep(0, attr(Xvlm, "hwm")[1] - 1))
} else {
coefStart <- rep(init[1] / attr(Xvlm, "hwm")[1], attr(Xvlm, "hwm")[1])
}
if ("(Intercept):omega" %in% colnames(Xvlm)) {
coefStart <- c(coefStart, init[2], rep(0, attr(Xvlm, "hwm")[2] - 1))
} else {
coefStart <- c(coefStart, rep(init[2] / attr(Xvlm, "hwm")[2], attr(Xvlm, "hwm")[2]))
}
}
)
structure(
list(
makeMinusLogLike = minusLogLike,
densityFunction = dFun,
links = links,
mu.eta = mu.eta,
valideta = function (eta) {TRUE},
variance = variance,
Wfun = Wfun,
funcZ = funcZ,
devResids = devResids,
validmu = validmu,
pointEst = pointEst,
popVar = popVar,
family = "ztoipoisson",
etaNames = c("lambda", "omega"),
simulate = simulate,
getStart = getStart,
extraInfo = c(
mean = "omega * (1 - exp(-lambda)) + lambda * (1 - omega)",
variance = paste0(
"omega * (1 - exp(-lambda))",
" + (1 - omega) * (lambda + lambda ^ 2) - mean ^ 2"
),
popSizeEst = "(1 + exp(-lambda)) ^ -1",
meanTr = "omega + (1 - omega) * lambda / (1 - exp(-lambda))",
varianceTr = paste0(
"omega + (1 - omega) * (lambda ^ 2 + lambda)",
" / (1 - exp(-lambda)) - meanTr ^ 2"
)
)
),
class = c("singleRfamily", "family")
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.