Nothing
#' @rdname singleRmodels
#' @importFrom lamW lambertW0
#' @export
Hurdleztpoisson <- function(lambdaLink = c("log", "neglog"),
piLink = c("logit", "cloglog", "probit"),
...) {
if (missing(lambdaLink)) lambdaLink <- "log"
if (missing(piLink)) piLink <- "logit"
links <- list()
attr(links, "linkNames") <- c(lambdaLink, piLink)
lambdaLink <- switch(lambdaLink,
"log" = singleRinternallogLink,
"neglog" = singleRinternalneglogLink
)
piLink <- switch(piLink,
"logit" = singleRinternallogitLink,
"cloglog" = singleRinternalcloglogLink,
"probit" = singleRinternalprobitLink
)
links[1:2] <- c(lambdaLink, piLink)
mu.eta <- function(eta, type = "trunc", deriv = FALSE, ...) {
PI <- piLink(eta[, 2], inverse = TRUE)
lambda <- lambdaLink(eta[, 1], inverse = TRUE)
if (!deriv) {
switch (type,
"nontrunc" = PI + (1 - PI) * exp(-lambda) * (lambda * exp(lambda) - lambda) / (1 - lambda * exp(-lambda)),
"trunc" = PI * (1 - lambda * exp(-lambda)) / (1 - (1 - PI) * exp(-lambda) - lambda * exp(-lambda)) +
(1 - PI) * lambda * (exp(lambda) - 1) * exp(-lambda) / (1 - (1 - PI) * exp(-lambda) - lambda * exp(-lambda))
)
} else {
switch (type,
"nontrunc" = {
matrix(c(
(1 - PI) * exp(lambda) * (exp(lambda) - lambda ^ 2 + lambda - 1) /
(exp(lambda) - lambda) ^ 2,
(1 - lambda) * exp(lambda) / (exp(lambda) - lambda)
) * c(
lambdaLink(eta[, 1], inverse = TRUE, deriv = 1),
piLink(eta[, 2], inverse = TRUE, deriv = 1)
), ncol = 2)
},
"trunc" = {
matrix(c(
(exp(2 * lambda) + (-lambda ^ 2 + PI * lambda - 2) * exp(lambda) + 1) *
(1 - PI) / (exp(lambda) - lambda + PI - 1) ^ 2,
-(exp(lambda) - lambda) * ((lambda - 1) * exp(lambda) + 1) /
(PI + exp(lambda) - lambda - 1) ^ 2
) * c(
lambdaLink(eta[, 1], inverse = TRUE, deriv = 1),
piLink(eta[, 2], inverse = TRUE, deriv = 1)
), ncol = 2)
}
)
}
}
variance <- function(eta, type = "nontrunc", ...) {
PI <- piLink(eta[, 2], inverse = TRUE)
lambda <- lambdaLink(eta[, 1], inverse = TRUE)
switch(type,
"nontrunc" = PI + (1 - PI) * exp(-lambda) * lambda *
(exp(lambda) * (1 + lambda) - 1) / (1 - lambda * exp(-lambda)),
"trunc" = PI * (1 - lambda * exp(-lambda)) /
(1 - (1 - PI) * exp(-lambda) - lambda * exp(-lambda)) +
(1 - PI) * exp(-lambda) * lambda * (exp(lambda) * (1 + lambda) - 1) /
(1 - (1 - PI) * exp(-lambda) - lambda * exp(-lambda))
) - (mu.eta(eta = eta, type = type) ^ 2)
}
Wfun <- function(prior, eta, ...) {
PI <- piLink(eta[, 2], inverse = TRUE)
lambda <- lambdaLink(eta[, 1], inverse = TRUE)
z <- PI * (1 - lambda * exp(-lambda)) / (1 - (1 - PI) * exp(-lambda) - lambda * exp(-lambda))
## expected for (1-z)Y
YY <- mu.eta(eta) - z
# PI^2 derivative
G00 <- exp(-2 * lambda) / (-exp(-lambda) * (1 - PI) - lambda * exp(-lambda) + 1) ^ 2 -
z / PI ^ 2 - (1 - z) / (1 - PI) ^ 2
G00 <- G00 * piLink(eta[, 2], inverse = TRUE, deriv = 1) ^ 2
# mixed
G01 <- (exp(lambda) - 1) / (exp(lambda) - lambda + PI - 1) ^ 2
G01 <- G01 * lambdaLink(eta[, 1], inverse = TRUE, deriv = 1) *
piLink(eta[, 2], inverse = TRUE, deriv = 1)
# Beta^2 derivative
G11 <- (lambda * exp(-lambda) + (1 - PI) * exp(-lambda) - exp(-lambda)) ^ 2 /
(-lambda * exp(-lambda) - (1 - PI) * exp(-lambda) + 1) ^ 2 -
(z * (lambda * exp(-lambda) - exp(-lambda)) ^ 2) /
(1 - lambda * exp(-lambda)) ^ 2 +
(lambda * exp(-lambda) + (1 - PI) * exp(-lambda) - 2 * exp(-lambda)) /
(-lambda * exp(-lambda) - (1 - PI) * exp(-lambda) + 1) +
(z * (2 * exp(-lambda) - lambda * exp(-lambda))) /
(1 - lambda * exp(-lambda)) - YY / lambda ^ 2
G11 <- G11 * lambdaLink(eta[, 1], inverse = TRUE, deriv = 1) ^ 2
matrix(
-c(G11, # lambda
G01, # mixed
G01, # mixed
G00 # pi
),
dimnames = list(rownames(eta), c("lambda", "mixed", "mixed", "pi")),
ncol = 4
)
}
funcZ <- function(eta, weight, y, prior, ...) {
PI <- piLink(eta[, 2], inverse = TRUE)
lambda <- lambdaLink(eta[, 1], inverse = TRUE)
weight <- weight / prior
z <- ifelse(y == 1, y, 0)
# lambda derivative
G1 <- -(lambda * exp(-lambda) + (1 - PI) * exp(-lambda) - exp(-lambda)) /
(-lambda * exp(-lambda) - (1 - PI) * exp(-lambda) + 1) +
(z * (lambda * exp(-lambda) - exp(-lambda))) /
(1 - lambda * exp(-lambda)) + (1 - z) * (y / lambda - 1)
G1 <- G1 * lambdaLink(eta[, 1], inverse = TRUE, deriv = 1)
# PI derivative
G0 <- z / PI - (1 - z) / (1 - PI) -
exp(-lambda) / (-exp(-lambda) * (1-PI) - lambda * exp(-lambda) + 1)
G0 <- G0 * piLink(eta[, 2], inverse = TRUE, deriv = 1)
uMatrix <- matrix(c(G1, G0), ncol = 2)
weight <- lapply(X = 1:nrow(weight), FUN = function (x) {
matrix(as.numeric(weight[x, ]), ncol = 2)
})
pseudoResid <- sapply(X = 1:length(weight), FUN = function (x) {
xx <- solve(weight[[x]])
xx %*% uMatrix[x, ]
})
pseudoResid <- t(pseudoResid)
dimnames(pseudoResid) <- dimnames(eta)
pseudoResid
}
minusLogLike <- function(y, X,
weight = 1,
NbyK = FALSE,
vectorDer = FALSE,
deriv = 0,
offset,
...) {
y <- as.numeric(y)
if (is.null(weight)) {
weight <- 1
}
if (missing(offset)) {
offset <- cbind(rep(0, NROW(X) / 2), rep(0, NROW(X) / 2))
}
z <- as.numeric(y == 1)
if (!(deriv %in% c(0, 1, 2)))
stop("Only score function and derivatives up to 2 are supported.")
# to make it conform to how switch in R works, i.e. indexing begins with 1
deriv <- deriv + 1
switch (deriv,
function(beta) {
eta <- matrix(as.matrix(X) %*% beta, ncol = 2) + offset
PI <- piLink(eta[, 2], inverse = TRUE)
lambda <- lambdaLink(eta[, 1], inverse = TRUE)
-sum((z * (log(1 - lambda * exp(-lambda)) + log(PI)) +
(1 - z) * (log(1 - PI) + y * log(lambda) - lambda - lgamma(y + 1)) -
log(1 - (1 - PI) * exp(-lambda) - lambda * exp(-lambda))) * weight)
},
function(beta) {
eta <- matrix(as.matrix(X) %*% beta, ncol = 2) + offset
PI <- piLink(eta[, 2], inverse = TRUE)
lambda <- lambdaLink(eta[, 1], inverse = TRUE)
# lambda derivative
G1 <- -(lambda * exp(-lambda) + (1 - PI) * exp(-lambda) - exp(-lambda)) /
(-lambda * exp(-lambda) - (1 - PI) * exp(-lambda) + 1) +
(z * (lambda * exp(-lambda) - exp(-lambda))) /
(1 - lambda * exp(-lambda)) + (1 - z) * (y / lambda - 1)
G1 <- G1 * weight * lambdaLink(eta[, 1], inverse = TRUE, deriv = 1)
# PI derivative
G0 <- z / PI - (1 - z) / (1 - PI) -
exp(-lambda) / (-exp(-lambda) * (1-PI) - lambda * exp(-lambda) + 1)
G0 <- G0 * weight * piLink(eta[, 2], inverse = TRUE, deriv = 1)
if (NbyK) {
XX <- 1:(attr(X, "hwm")[1])
return(cbind(as.data.frame(X[1:nrow(eta), XX]) * G1, as.data.frame(X[-(1:nrow(eta)), -XX]) * G0))
}
if (vectorDer) {
return(cbind(G1, G0))
}
as.numeric(c(G1, G0) %*% X)
},
function (beta) {
lambdaPredNumber <- attr(X, "hwm")[1]
eta <- matrix(as.matrix(X) %*% beta, ncol = 2) + offset
PI <- piLink(eta[, 2], inverse = TRUE)
lambda <- lambdaLink(eta[, 1], inverse = TRUE)
res <- matrix(nrow = length(beta), ncol = length(beta),
dimnames = list(names(beta), names(beta)))
G1 <- -(lambda * exp(-lambda) + (1 - PI) * exp(-lambda) - exp(-lambda)) /
(-lambda * exp(-lambda) - (1 - PI) * exp(-lambda) + 1) +
(z * (lambda * exp(-lambda) - exp(-lambda))) /
(1 - lambda * exp(-lambda)) + (1 - z) * (y / lambda - 1)
G0 <- z / PI - (1 - z) / (1 - PI) -
exp(-lambda) / (-exp(-lambda) * (1-PI) - lambda * exp(-lambda) + 1)
# PI^2 derivative
G00 <- exp(-2 * lambda) / (-exp(-lambda) * (1 - PI) - lambda * exp(-lambda) + 1) ^ 2 -
z / PI ^ 2 - (1 - z) / (1 - PI) ^ 2
G00 <- G00 * piLink(eta[, 2], inverse = TRUE, deriv = 1) ^ 2 +
G0 * piLink(eta[, 2], inverse = TRUE, deriv = 2)
# mixed
G01 <- (exp(lambda) - 1) / (exp(lambda) - lambda + PI - 1) ^ 2
G01 <- G01 * lambdaLink(eta[, 1], inverse = TRUE, deriv = 1) *
piLink(eta[, 2], inverse = TRUE, deriv = 1)
# lambda^2 derivative
G11 <- (lambda * exp(-lambda) + (1 - PI) * exp(-lambda) - exp(-lambda)) ^ 2 /
(-lambda * exp(-lambda) - (1 - PI) * exp(-lambda) + 1) ^ 2 -
(z * (lambda * exp(-lambda) - exp(-lambda)) ^ 2) /
(1 - lambda * exp(-lambda)) ^ 2 +
(lambda * exp(-lambda) + (1 - PI) * exp(-lambda) - 2 * exp(-lambda)) /
(-lambda * exp(-lambda) - (1 - PI) * exp(-lambda) + 1) +
(z * (2 * exp(-lambda) - lambda * exp(-lambda))) /
(1 - lambda * exp(-lambda)) - (y * (1 - z)) / lambda ^ 2
G11 <- G11 * lambdaLink(eta[, 1], inverse = TRUE, deriv = 1) ^ 2 +
G1 * lambdaLink(eta[, 1], inverse = TRUE, deriv = 2)
res[-(1:lambdaPredNumber), -(1:lambdaPredNumber)] <-
t(as.data.frame(X[-(1:(nrow(X) / 2)), -(1:lambdaPredNumber)] * G00 * weight)) %*%
as.matrix(X[-(1:(nrow(X) / 2)), -(1:lambdaPredNumber)])
res[1:lambdaPredNumber, 1:lambdaPredNumber] <-
t(as.data.frame(X[1:(nrow(X) / 2), 1:lambdaPredNumber] * G11 * weight)) %*%
X[1:(nrow(X) / 2), 1:lambdaPredNumber]
res[1:lambdaPredNumber, -(1:lambdaPredNumber)] <-
t(as.data.frame(X[1:(nrow(X) / 2), 1:lambdaPredNumber] * G01 * weight)) %*%
as.matrix(X[-(1:(nrow(X) / 2)), -(1:lambdaPredNumber)])
res[-(1:lambdaPredNumber), 1:lambdaPredNumber] <-
t(t(as.data.frame(X[1:(nrow(X) / 2), 1:lambdaPredNumber] * G01 * weight)) %*%
as.matrix(X[-(1:(nrow(X) / 2)), -(1:lambdaPredNumber)]))
res
}
)
}
validmu <- function(mu) {
all(0 < mu & is.finite(mu))
}
devResids <- function(y, eta, wt, ...) {
PI <- piLink(eta[, 2], inverse = TRUE)
lambda <- lambdaLink(eta[, 1], inverse = TRUE)
# when pi = 0 distribution collapses to zotpoisson
inverseFunction <- function(y) {stats::uniroot(
f = function(x) {
lambda <- exp(x)
(lambda - lambda * exp(-lambda)) / (1 - exp(-lambda) - lambda * exp(-lambda)) - y
},
lower = -log(y), upper = y * 10,
tol = .Machine$double.eps
)$root}
yUnq <- unique(y)
idealLambda <- tryCatch(
expr = {
suppressWarnings(sapply(yUnq,
FUN = function(x) ifelse(x %in% c(1, 2), -Inf, inverseFunction(x))
))
},
error = function (e) {
warning("Deviance residuals could not have been computed and zero vector will be returned instead.", call. = FALSE)
NULL
}
)
if (is.null(idealLambda)) {
return(rep(0, length(y)))
}
idealLambda <- sapply(y, FUN = function(x) idealLambda[yUnq == x])
idealLambda <- exp(idealLambda)
diff <- ifelse(
y == 1,
-(log(PI) + log(1 - lambda * exp(-lambda)) - log(1 - (1 - PI) * exp(-lambda) - lambda * exp(-lambda))),
ifelse(y == 2, 0,
y * log(idealLambda) - idealLambda - log(1 - exp(-idealLambda) - idealLambda * exp(-idealLambda)) - lgamma(y + 1)) -
(log(1 - PI) + y * log(lambda) - lambda - lgamma(y + 1) - log(1 - (1 - PI) * exp(-lambda) - lambda * exp(-lambda)))
)
if (any(diff < 0)) {
warning(paste0(
"Some of differences between log likelihood in sautrated model",
" and fitted model were positive which indicates either:\n",
"(1): A very good model fitt or\n",
"(2): Incorrect computation of saturated model",
"\nDouble check deviance before proceeding"
))
diff[diff < 0] <- 0
}
sign(y - mu.eta(eta = eta)) * sqrt(2 * wt * diff)
}
pointEst <- function (pw, eta, contr = FALSE, ...) {
PI <- piLink(eta[, 2], inverse = TRUE)
lambda <- lambdaLink(eta[, 1], inverse = TRUE)
N <- pw * (1 - lambda * exp(-lambda)) /
(1 - (1 - PI) * exp(-lambda) - lambda * exp(-lambda))
if(!contr) {
N <- sum(N)
}
N
}
popVar <- function (pw, eta, cov, Xvlm, ...) {
PI <- piLink(eta[, 2], inverse = TRUE)
lambda <- lambdaLink(eta[, 1], inverse = TRUE)
prob <- 1 - (1 - PI) * exp(-lambda) - lambda * exp(-lambda)
# w.r to PI
bigTheta1 <- -pw * piLink(eta[, 2], inverse = TRUE, deriv = 1) *
((exp(lambda) - lambda) / (PI + exp(lambda) - lambda - 1) ^ 2)
# w.r to lambda
bigTheta2 <- pw * lambdaLink(eta[, 1], inverse = TRUE, deriv = 1) *
(PI - 1) * (exp(lambda) - 1) / (exp(lambda) - lambda + PI - 1) ^ 2
bigTheta <- t(c(bigTheta2, bigTheta1) %*% Xvlm)
f1 <- t(bigTheta) %*% as.matrix(cov) %*% bigTheta
f2 <- sum(pw * (1 - lambda * exp(-lambda)) * (1 - PI) * exp(-lambda) / (prob ^ 2))
f1 + f2
}
dFun <- function (x, eta, type = c("trunc", "nontrunc")) {
if (missing(type)) type <- "trunc"
PI <- piLink(eta[, 2], inverse = TRUE)
lambda <- lambdaLink(eta[, 1], inverse = TRUE)
switch (type,
"trunc" = {
ifelse(x == 1, PI * (1 - lambda * exp(-lambda)) /
(1 - (1 - PI) * exp(-lambda) - lambda * exp(-lambda)),
(1 - PI) * (lambda ^ x) * exp(-lambda) /
((1 - (1 - PI) * exp(-lambda) - lambda * exp(-lambda)) * factorial(x))
)
},
"nontrunc" = {
ifelse(x == 1, PI, (1 - PI) *
stats::dpois(x, lambda) / (1 - lambda * exp(-lambda)))
}
)
}
simulate <- function(n, eta, lower = 0, upper = Inf) {
PI <- piLink(eta[, 2], inverse = TRUE)
lambda <- lambdaLink(eta[, 1], inverse = TRUE)
CDF <- function(x) {
ifelse(x == Inf, 1,
ifelse(x < 0, 0,
ifelse(x < 1, (1 - PI) * exp(-lambda) / (1 - lambda * exp(-lambda)),
PI + (1 - PI) * (stats::ppois(x, lambda) - lambda * exp(-lambda)
) / (1 - lambda * exp(-lambda)))))
}
lb <- CDF(lower)
ub <- CDF(upper)
p_u <- stats::runif(n, lb, ub)
sims <- rep(0, n)
cond <- CDF(sims) <= p_u
while (any(cond)) {
sims[cond] <- sims[cond] + 1
cond <- CDF(sims) <= p_u
}
sims
}
getStart <- expression(
if (method == "IRLS") {
etaStart <- cbind(
pmin(family$links[[1]](observed), family$links[[1]](12)),
family$links[[2]](weighted.mean(observed == 1, priorWeights) * (.5 + .5 * (observed == 1)) + .01)
) + offset
} else if (method == "optim") {
init <- c(
family$links[[1]](weighted.mean(observed, priorWeights)),
family$links[[2]](weighted.mean(observed == 1, priorWeights) + .01)
)
if (attr(terms, "intercept")) {
coefStart <- c(init[1], rep(0, attr(Xvlm, "hwm")[1] - 1))
} else {
coefStart <- rep(init[1] / attr(Xvlm, "hwm")[1], attr(Xvlm, "hwm")[1])
}
if ("(Intercept):pi" %in% colnames(Xvlm)) {
coefStart <- c(coefStart, init[2], rep(0, attr(Xvlm, "hwm")[2] - 1))
} else {
coefStart <- c(coefStart, rep(init[2] / attr(Xvlm, "hwm")[2], attr(Xvlm, "hwm")[2]))
}
}
)
structure(
list(
makeMinusLogLike = minusLogLike,
densityFunction = dFun,
links = links,
mu.eta = mu.eta,
valideta = function (eta) {TRUE},
variance = variance,
Wfun = Wfun,
funcZ = funcZ,
devResids = devResids,
validmu = validmu,
pointEst = pointEst,
popVar = popVar,
family = "Hurdleztpoisson",
etaNames = c("lambda", "pi"),
simulate = simulate,
getStart = getStart
),
class = c("singleRfamily", "family")
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.