Nothing
#' @rdname singleRmodels
#' @importFrom lamW lambertW0
#' @export
Hurdleztgeom <- function(lambdaLink = c("log", "neglog"),
piLink = c("logit", "cloglog", "probit"),
...) {
if (missing(lambdaLink)) lambdaLink <- "log"
if (missing(piLink)) piLink <- "logit"
links <- list()
attr(links, "linkNames") <- c(lambdaLink, piLink)
lambdaLink <- switch(lambdaLink,
"log" = singleRinternallogLink,
"neglog" = singleRinternalneglogLink
)
piLink <- switch(piLink,
"logit" = singleRinternallogitLink,
"cloglog" = singleRinternalcloglogLink,
"probit" = singleRinternalprobitLink
)
links[1:2] <- c(lambdaLink, piLink)
mu.eta <- function(eta, type = "trunc", deriv = FALSE, ...) {
PI <- piLink(eta[, 2], inverse = TRUE)
lambda <- lambdaLink(eta[, 1], inverse = TRUE)
if (!deriv) {
switch (type,
"nontrunc" = PI + (1 - PI) * lambda * lambda * (2 + lambda) /
(lambda ^ 2 + lambda + 1),
"trunc" = PI * (lambda ^ 2 + lambda + 1) /
(lambda ^ 2 + PI * (lambda + 1)) +
(1 - PI) * (2 + lambda) * lambda ^ 2 / (lambda ^ 2 + PI * (lambda + 1))
)
} else {
switch (type,
"nontrunc" = {
matrix(c(
(1 - PI) * lambda * (lambda ^ 3 + 2 * lambda ^ 2 + 5 * lambda + 4) /
(lambda ^ 2 + lambda + 1) ^ 2,
1 - (lambda ^ 2 * (lambda + 2)) / (lambda ^ 2 + lambda + 1)
) * c(
lambdaLink(eta[, 1], inverse = TRUE, deriv = 1),
piLink(eta[, 2], inverse = TRUE, deriv = 1)
), ncol = 2)
},
"trunc" = {
matrix(c(
(1 - PI) * lambda *
(lambda ^ 3 + 2 * PI * lambda ^ 2 + 4 * PI * lambda + 2 * PI) /
(lambda ^ 2 + PI * lambda + PI) ^ 2,
-lambda ^ 2 * (lambda + 1) * (lambda ^ 2 + lambda + 1) /
((lambda + 1) * PI + lambda ^ 2) ^ 2
) * c(
lambdaLink(eta[, 1], inverse = TRUE, deriv = 1),
piLink(eta[, 2], inverse = TRUE, deriv = 1)
), ncol = 2)
}
)
}
}
variance <- function(eta, type = "nontrunc", ...) {
PI <- piLink(eta[, 2], inverse = TRUE)
lambda <- lambdaLink(eta[, 1], inverse = TRUE)
switch(type,
"nontrunc" = PI + (1 - PI) * lambda * lambda * (2 * lambda * lambda + 5 * lambda + 4) / (lambda ^ 2 + lambda + 1),
"trunc" = PI * (lambda ^ 2 + lambda + 1) / (lambda ^ 2 + PI * (lambda + 1)) + (1 - PI) * lambda * lambda * (2 * lambda * lambda + 5 * lambda + 4) / (lambda ^ 2 + PI * (lambda + 1))
) - (mu.eta(eta = eta, type = type) ^ 2)
}
Wfun <- function(prior, eta, ...) {
PI <- piLink(eta[, 2], inverse = TRUE)
lambda <- lambdaLink(eta[, 1], inverse = TRUE)
z <- PI * (lambda ^ 2 + lambda + 1) / (lambda ^ 2 + PI * (lambda + 1))
## expected value for (1-z)Y
YY <- mu.eta(eta) - z
# PI^2 derivative
G00 <- (-z / (PI ^ 2) - (1 - z) / ((1 - PI) ^ 2) +
((lambda + 1) / (lambda ^ 2 + PI * (lambda + 1))) ^ 2) *
piLink(eta[, 2], inverse = TRUE, deriv = 1) ^ 2 * prior
# mixed derivative
G01 <- lambda * (lambda + 2) / ((lambda ^ 2 + PI * (lambda + 1)) ^ 2) *
lambdaLink(eta[, 1], inverse = TRUE, deriv = 1) *
piLink(eta[, 2], inverse = TRUE, deriv = 1) * prior
# Beta^2 derivative
G11 <- (((YY - 1 + z) / (1 + lambda) ^ 2 - YY / lambda ^ 2) +
z * (2 * (lambda ^ 2 + lambda + 1) - (2 * lambda + 1) ^ 2) /
(lambda ^ 2 + lambda + 1) ^ 2 +
(2 * lambda + PI) ^ 2 / (lambda ^ 2 + PI * (lambda + 1)) ^ 2 -
2 / (lambda ^ 2 + PI * (lambda + 1))) * prior *
lambdaLink(eta[, 1], inverse = TRUE, deriv = 1) ^ 2
matrix(
-c(G11, # lambda
G01, # mixed
G01, # mixed
G00 # pi
),
dimnames = list(rownames(eta), c("lambda", "mixed", "mixed", "pi")),
ncol = 4
)
}
funcZ <- function(eta, weight, y, prior, ...) {
PI <- piLink(eta[, 2], inverse = TRUE)
lambda <- lambdaLink(eta[, 1], inverse = TRUE)
z <- ifelse(y == 1, y, 0)
weight <- weight / prior
# lambda derivative
G1 <- z * (2 * lambda + 1) / (lambda ^ 2 + lambda + 1) +
(1 - z) * (y / lambda - (y - 1) / (1 + lambda)) -
(2 * lambda + PI) / (lambda ^ 2 + PI * (lambda + 1))
G1 <- G1 * lambdaLink(eta[, 1], inverse = TRUE, deriv = 1)
# PI derivative
G0 <- z / PI - (1 - z) / (1 - PI) -
(1 + lambda) / (lambda ^ 2 + PI * (1 + lambda))
G0 <- G0 * piLink(eta[, 2], inverse = TRUE, deriv = 1)
uMatrix <- matrix(c(G1, G0), ncol = 2)
weight <- lapply(X = 1:nrow(weight), FUN = function (x) {
matrix(as.numeric(weight[x, ]), ncol = 2)
})
pseudoResid <- sapply(X = 1:length(weight), FUN = function (x) {
xx <- solve(weight[[x]])
xx %*% uMatrix[x, ]
})
pseudoResid <- t(pseudoResid)
dimnames(pseudoResid) <- dimnames(eta)
pseudoResid
}
minusLogLike <- function(y, X, weight = 1, NbyK = FALSE, vectorDer = FALSE, deriv = 0, ...) {
y <- as.numeric(y)
if (is.null(weight)) {
weight <- 1
}
z <- as.numeric(y == 1)
if (!(deriv %in% c(0, 1, 2)))
stop("Only score function and derivatives up to 2 are supported.")
# to make it conform to how switch in R works, i.e. indexing begins with 1
deriv <- deriv + 1
switch (deriv,
function(beta) {
eta <- matrix(as.matrix(X) %*% beta, ncol = 2)
PI <- piLink(eta[, 2], inverse = TRUE)
lambda <- lambdaLink(eta[, 1], inverse = TRUE)
-sum(weight * (z * (log(PI) + log(lambda ^ 2 + lambda + 1)) +
(1 - z) * (log(1 - PI) + y * log(lambda) - (y - 1) * log(1 + lambda)) -
log(lambda ^ 2 + PI * (lambda + 1))))
},
function(beta) {
eta <- matrix(as.matrix(X) %*% beta, ncol = 2)
PI <- piLink(eta[, 2], inverse = TRUE)
lambda <- lambdaLink(eta[, 1], inverse = TRUE)
# lambda derivative
G1 <- z * (2 * lambda + 1) / (lambda ^ 2 + lambda + 1) +
(1 - z) * (y / lambda - (y - 1) / (1 + lambda)) -
(2 * lambda + PI) / (lambda ^ 2 + PI * (lambda + 1))
G1 <- G1 * weight * lambdaLink(eta[, 1], inverse = TRUE, deriv = 1)
# PI derivative
G0 <- z / PI - (1 - z) / (1 - PI) -
(1 + lambda) / (lambda ^ 2 + PI * (1 + lambda))
G0 <- G0 * weight * piLink(eta[, 2], inverse = TRUE, deriv = 1)
if (NbyK) {
XX <- 1:(attr(X, "hwm")[1])
return(cbind(as.data.frame(X[1:nrow(eta), XX]) * G1, as.data.frame(X[-(1:nrow(eta)), -XX]) * G0))
}
if (vectorDer) {
return(cbind(G1, G0))
}
as.numeric(c(G1, G0) %*% X)
},
function (beta) {
lambdaPredNumber <- attr(X, "hwm")[1]
eta <- matrix(as.matrix(X) %*% beta, ncol = 2)
PI <- piLink(eta[, 2], inverse = TRUE)
lambda <- lambdaLink(eta[, 1], inverse = TRUE)
res <- matrix(nrow = length(beta), ncol = length(beta),
dimnames = list(names(beta), names(beta)))
# lambda derivative
G1 <- z * (2 * lambda + 1) / (lambda ^ 2 + lambda + 1) +
(1 - z) * (y / lambda - (y - 1) / (1 + lambda)) -
(2 * lambda + PI) / (lambda ^ 2 + PI * (lambda + 1))
G1 <- G1 * weight * lambdaLink(eta[, 1], inverse = TRUE, deriv = 1)
# PI derivative
G0 <- z / PI - (1 - z) / (1 - PI) -
(1 + lambda) / (lambda ^ 2 + PI * (1 + lambda))
G0 <- G0 * weight * piLink(eta[, 2], inverse = TRUE, deriv = 1)
# PI^2 derivative
G00 <- -z / (PI ^ 2) - (1 - z) / ((1 - PI) ^ 2) +
((lambda + 1) ^ 2) / ((lambda ^ 2 + PI * (lambda + 1)) ^ 2)
G00 <- weight * (G0 * piLink(eta[, 2], inverse = TRUE, deriv = 2) +
G00 * piLink(eta[, 2], inverse = TRUE, deriv = 1) ^ 2)
# mixed
G01 <- lambda * (lambda + 2) / ((lambda ^ 2 + PI * (lambda + 1)) ^ 2)
G01 <- G01 * piLink(eta[, 2], inverse = TRUE, deriv = 1) *
lambdaLink(eta[, 1], inverse = TRUE, deriv = 1) * weight
# Beta^2 derivative
G11 <- (1 - z) * ((y - 1) / (1 + lambda) ^ 2 - y / lambda ^ 2) +
z * (2 * (lambda ^ 2 + lambda + 1) - ((2 * lambda + 1) ^ 2)) /
(lambda ^ 2 + lambda + 1) ^ 2 +
(2 * lambda + PI) ^ 2 / (lambda ^ 2 + PI * (lambda + 1)) ^ 2 -
2 / (lambda ^ 2 + PI * (lambda + 1))
G11 <- (G11 * lambdaLink(eta[, 1], inverse = TRUE, deriv = 1) ^ 2 +
G1 * lambdaLink(eta[, 1], inverse = TRUE, deriv = 1)) * weight
res[-(1:lambdaPredNumber), -(1:lambdaPredNumber)] <-
t(as.data.frame(X[-(1:(nrow(X) / 2)), -(1:lambdaPredNumber)] * G00)) %*%
as.matrix(X[-(1:(nrow(X) / 2)), -(1:lambdaPredNumber)])
res[1:lambdaPredNumber, 1:lambdaPredNumber] <-
t(as.data.frame(X[1:(nrow(X) / 2), 1:lambdaPredNumber] * G11)) %*%
X[1:(nrow(X) / 2), 1:lambdaPredNumber]
res[1:lambdaPredNumber, -(1:lambdaPredNumber)] <-
t(as.data.frame(X[1:(nrow(X) / 2), 1:lambdaPredNumber] * G01)) %*%
as.matrix(X[-(1:(nrow(X) / 2)), -(1:lambdaPredNumber)])
res[-(1:lambdaPredNumber), 1:lambdaPredNumber] <-
t(t(as.data.frame(X[1:(nrow(X) / 2), 1:lambdaPredNumber] * G01)) %*%
as.matrix(X[-(1:(nrow(X) / 2)), -(1:lambdaPredNumber)]))
res
}
)
}
validmu <- function(mu) {
(sum(!is.finite(mu)) == 0) && all(0 < mu)
}
devResids <- function(y, eta, wt, ...) {
PI <- piLink(eta[, 2], inverse = TRUE)
lambda <- lambdaLink(eta[, 1], inverse = TRUE)
# when pi = 0 distribution collapses to zotgeom
idealLambda <- ifelse(y > 1, y - 2, 0)
diff <- ifelse(
y == 1, -(log(PI) + log(lambda ^ 2 + lambda + 1) - log(lambda ^ 2 + PI * (lambda + 1))),
ifelse(y == 2, 0,
(y - 2) * log(idealLambda) - (y - 1) * log(1 + idealLambda)) -
(log(1 - PI) + y * log(lambda) - (y - 1) * log(1 + lambda) -
log(lambda ^ 2 + PI * (lambda + 1)))
)
diff[diff < 0] <- 0
sign(y - mu.eta(eta = eta)) * sqrt(2 * wt * diff)
}
pointEst <- function (pw, eta, contr = FALSE, ...) {
PI <- piLink(eta[, 2], inverse = TRUE)
lambda <- lambdaLink(eta[, 1], inverse = TRUE)
N <- pw * (lambda ^ 2 + lambda + 1) / (lambda ^ 2 + PI * (lambda + 1))
if(!contr) {
N <- sum(N)
}
N
}
popVar <- function (pw, eta, cov, Xvlm, ...) {
PI <- piLink(eta[, 2], inverse = TRUE)
lambda <- lambdaLink(eta[, 1], inverse = TRUE)
# w.r to PI
bigTheta1 <- -pw * piLink(eta[, 2], inverse = TRUE, deriv = 1) *
(lambda ^ 2 + lambda + 1) * (lambda + 1) /
(lambda ^ 2 + PI * (lambda + 1)) ^ 2
# w.r to lambda
bigTheta2 <- pw * lambdaLink(eta[, 1], inverse = TRUE, deriv = 1) *
((PI - 1) * lambda * (lambda + 2)) / (lambda ^ 2 + PI * lambda + PI) ^ 2
bigTheta <- t(c(bigTheta2, bigTheta1) %*% Xvlm)
f1 <- t(bigTheta) %*% as.matrix(cov) %*% bigTheta
f2 <- sum(pw * (lambda ^ 2 + lambda + 1) * (1 - PI) * (1 + lambda) /
((lambda ^ 2 + PI * (lambda + 1)) ^ 2))
f1 + f2
}
dFun <- function (x, eta, type = c("trunc", "nontrunc")) {
if (missing(type)) type <- "trunc"
PI <- piLink(eta[, 2], inverse = TRUE)
lambda <- lambdaLink(eta[, 1], inverse = TRUE)
switch (type,
"trunc" = {
ifelse(x == 1, PI * (lambda ^ 2 + lambda + 1),
(1 - PI) * (lambda ^ x) / ((1 + lambda) ^ (x - 1))) /
(lambda ^ 2 + PI * (lambda + 1))
},
"nontrunc" = {
ifelse(x == 1, PI, (1 - PI) *
(lambda ^ x / (1 + lambda) ^ (x - 1)) / (lambda ^ 2 + lambda + 1))
}
)
}
simulate <- function(n, eta, lower = 0, upper = Inf) {
PI <- piLink(eta[, 2], inverse = TRUE)
lambda <- lambdaLink(eta[, 1], inverse = TRUE)
CDF <- function(x) {
p <- lambda / (1 + lambda)
const <- -lambda * (p ^ x + lambda * (p ^ x - 1))
polly <- lambda ^ 2 + lambda + 1
ifelse(x == Inf, 1,
ifelse(x < 0, 0,
ifelse(x < 1, (1 - PI) * (1 + lambda) / polly,
(1 - PI) * (1 + lambda) / polly + PI + (1 - PI) * const / polly)))
}
lb <- CDF(lower)
ub <- CDF(upper)
p_u <- stats::runif(n, lb, ub)
sims <- rep(0, n)
cond <- CDF(sims) <= p_u
while (any(cond)) {
sims[cond] <- sims[cond] + 1
cond <- CDF(sims) <= p_u
}
sims
}
getStart <- expression(
if (method == "IRLS") {
etaStart <- cbind(
pmin(family$links[[1]](observed), family$links[[1]](12)),
family$links[[2]](weighted.mean(observed == 1, priorWeights) *
(.5 + .5 * (observed == 1)) + .01)
) + offset
} else if (method == "optim") {
init <- c(
family$links[[1]](weighted.mean(observed, priorWeights)),
family$links[[2]](weighted.mean(observed == 1, priorWeights) + .01)
)
if (attr(terms, "intercept")) {
coefStart <- c(init[1], rep(0, attr(Xvlm, "hwm")[1] - 1))
} else {
coefStart <- rep(init[1] / attr(Xvlm, "hwm")[1], attr(Xvlm, "hwm")[1])
}
if ("(Intercept):pi" %in% colnames(Xvlm)) {
coefStart <- c(coefStart, init[2], rep(0, attr(Xvlm, "hwm")[2] - 1))
} else {
coefStart <- c(coefStart, rep(init[2] / attr(Xvlm, "hwm")[2], attr(Xvlm, "hwm")[2]))
}
}
)
structure(
list(
makeMinusLogLike = minusLogLike,
densityFunction = dFun,
links = links,
mu.eta = mu.eta,
valideta = function (eta) {TRUE},
variance = variance,
Wfun = Wfun,
funcZ = funcZ,
devResids = devResids,
validmu = validmu,
pointEst = pointEst,
popVar = popVar,
family = "Hurdleztgeom",
etaNames = c("lambda", "pi"),
simulate = simulate,
getStart = getStart,
extraInfo = c(
mean = paste0(
"PI + (1 - PI) * lambda * lambda * ",
"(2 + lambda) / (lambda ^ 2 + lambda + 1)"
),
variance = paste0(
"PI + (1 - PI) * lambda * lambda * ",
"\n(2 * lambda * lambda + 5 * lambda + 4) / (lambda ^ 2 + lambda + 1)",
" - mean ^ 2"
),
popSizeEst = paste0(
"(lambda ^ 2 + lambda + 1) / ",
"(lambda ^ 2 + PI * (lambda + 1))"
),
meanTr = paste0(
"PI * (lambda ^ 2 + lambda + 1) / (lambda ^ 2 + PI * (lambda + 1)) + ",
"\n(1 - PI) * (2 + lambda) * lambda ^ 2 / (lambda ^ 2 + PI * (lambda + 1))"
),
varianceTr = paste0(
"PI * (lambda ^ 2 + lambda + 1) / (lambda ^ 2 + PI * (lambda + 1)) +",
"\n(1 - PI) * lambda * lambda * (2 * lambda * lambda + 5 * lambda + 4)",
" / (lambda ^ 2 + PI * (lambda + 1))",
" - meanTr ^ 2"
)
)
),
class = c("singleRfamily", "family")
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.