R/cdsw.R

Defines functions hardconstrain objectiveMS1Function .adjustBreaks

Documented in hardconstrain objectiveMS1Function

.adjustBreaks <- function(breaks, digits) {
    breaks[1] <- breaks[1] - 1 / (10 ^ digits)
    breaks[length(breaks)] <-
        breaks[length(breaks)] + 1 / (10 ^ digits)
    round(breaks, digits = digits)
}


#' compute the deviation from optimum: equal number of MS1 per bin
#' @param splits the new window boundaries
#' @param data the data
#' @return list with score1 - manhattan distance, score2 - euclidean distance, counts - observed counts, optimumN - optimum counts
#'
objectiveMS1Function <- function(splits, data) {
    counts <- graphics::hist(data, breaks = splits, plot = FALSE)$counts
    nbins <- length(splits) - 1
    optimumN <- length(data) / (length(splits) - 1)
    optimumN <- rep(optimumN, nbins)
    counts <- counts / sqrt(sum((counts) ^ 2))
    optimumN <- optimumN / sqrt(sum(optimumN ^ 2))
    score2 <- sqrt(sum((counts - optimumN) ^ 2)) / length(counts)
    score1 <-
        sum(abs(counts / max(abs(counts)) - optimumN / max(abs(optimumN)))) / length(counts)
    return(list(
        score1 = score1,
        score2 = score2,
        counts = counts,
        optimumN = (optimumN)
    ))
}

#' tests hard constraints
#' @keywords internal
#' @param splits the proposed splits
#' @param minwindow min window size
#' @param maxwindow max window size
#' @return logical
hardconstrain <- function(splits,
                          minwindow = 5,
                          maxwindow = 50) {
    difsp <- diff(splits)
    return(sum(difsp >= minwindow) == length(difsp) &
               sum(difsp <= maxwindow) == length(difsp))
}

# Cdsw ----
#' Compute dynamic swath windows
#' @field masses MS1 masses
#' @field breaks the breaks
#' @field nbins number of bins
#' @field digits mass accuracy in result
#' @import methods
#' @importFrom methods new
#' @include readjustWindow.R
#' @export Cdsw
#' @exportClass Cdsw
#' @examples
#' data(masses)
#' cdsw <- Cdsw(masses)
#' tmp <- cdsw$sampling_breaks(maxwindow=100,plot=TRUE)
#' cdsw$plot()
#' cdsw$asTable()
#' cdsw$breaks
#' cdsw$optimizeWindows()
#' cdsw$showCycle()
Cdsw <- setRefClass(
    "Cdsw",
    fields = list(
        masses = "numeric",
        breaks = "numeric",
        nbins = "numeric",
        digits = "numeric"
    )
    ,
    methods = list(
        #' @description initialize
        #' @param list of masses
        #' @param nbins number of bins default 25
        #' @param digits precision default 1
        initialize = function(masses,
                              nbins = 25,
                              digits = 1) {
            .self$masses = masses
            .self$nbins = nbins
            .self$digits = digits
            constant_breaks()
        },
        #' @description create equidistant breaks
        #' @param digits mass precision default 2
        #' @return array of masses
        constant_breaks = function(digits = 2) {
            minmass <- round(min(.self$masses) - 1 / 10 ^ digits, digits = 2)
            maxmass <-
                round(max(.self$masses) + 1 / 10 ^ digits, digits = 2)
            .self$breaks <-
                round(seq(minmass, maxmass, length.out = nbins + 1), digits = digits)
            invisible(.self$breaks)
        }
        ,
        #' @description
        #' quantile breaks
        #' @param digits mass precision
        #' @return array with masses
        quantile_breaks = function(digits = 2) {
            "same number of MS1 in each window but might violate hard constraints"
            qqs <-
                quantile(.self$masses, seq(0, 1, length = nbins + 1))
            .self$breaks <-
                .adjustBreaks(qqs, digits = digits)
            invisible(.self$breaks)
        },
        #' @description
        #' sampling breaks
        #' @param maxwindow largest window size
        #' @param minwindow smallest window size
        #' @param digits mass precision default 2
        #' @param plot logical default FALSE
        #' @return array with masses
        sampling_breaks = function(maxwindow = 150,
                                   minwindow = 5,
                                   digits = 2,
                                   plot = FALSE)
        {
            "starts with quantile breaks but mixes with uniform data to satisfy had constraints"
            nrbreaks <- nbins + 1
            qqs <-
                quantile(masses, probs = seq(0, 1, by = 1 / (nbins)))
            unif <-
                seq(min(masses), max(masses), length = (nrbreaks))

            if (plot) {
                graphics::plot(qqs, seq_len(nrbreaks), type = "b")
                graphics::legend("topleft", legend = c(paste("maxwindow = ", maxwindow),
                                                       paste("nbins = ", nrbreaks)))
                # equidistant spaced bins
                graphics::lines(unif, seq_len(nrbreaks), col = 2, type =
                                    "b")

            }

            if (!hardconstrain(unif, minwindow = minwindow, maxwindow)) {
                warning(
                    "there is no way to generate bins given this number of bins " ,
                    nbins,
                    "and minwindow size :",
                    minwindow,
                    " , maxwindow size ",
                    maxwindow,
                    "\n"
                )
            }

            mixeddata <- masses

            while (!hardconstrain(qqs, minwindow, maxwindow)) {
                uniformdata <-
                    runif(round(length(masses) / 20),
                          min = min(masses),
                          max = max(masses))
                mixeddata <- c(mixeddata, uniformdata)
                qqs <-
                    quantile(mixeddata, probs = seq(0, 1, by = 1 / (nbins)))
                if (plot) {
                    graphics::lines(qqs, seq_len(nrbreaks), type = "b", col = "#00DD00AA")
                }
            }
            .self$breaks <-
                .adjustBreaks(qqs, digits = digits)
            invisible(.self$breaks)

        },
        #' @description
        #' barplot showing the number of precursors per window
        #' @return NULL
        plot = function() {
            tmp <- graphics::hist(x = .self$masses,
                                  breaks = .self$breaks,
                                  plot = FALSE)
            names(tmp$counts) <-
                round(tmp$mids, digits = 2)
            barplot(tmp$counts, las = 2)
        },
        #' @description
        #' Table with window boundaries and statistics
        #' @param overlap size of window overlap default 1 m/z
        #' @return data.frame with columns:
        #' - from (window start)
        #' - to (window end)
        #' - mid (window centre), width (window width)
        #' - counts expected number of precursors
        #'
        asTable = function(overlap = 1) {
            "make windows"
            q <- .self$breaks
            n <- length(q) - 1
            idx <- seq_len(n)
            from <- q[idx] - overlap * 0.5
            to <- q[idx + 1] + overlap * 0.5
            width <-  (to - from)
            mid <- from + width * 0.5

            tmp <- data.frame(from, to, mid, width)
            counts <- vector("integer")
            for (i in seq_len(nrow(tmp))) {
                counts[i] <-
                    sum(.self$masses > tmp$from[i] & .self$masses < tmp$to[i])
            }
            tmp$counts <- counts
            return(tmp)
        },
        #' @description
        #' summary of the binning process (see objectiveMS1Function for more details)
        #' @return list with optimization scores
        error = function() {
            "show error"
            objectiveMS1Function(.self$breaks, .self$masses)
        },
        #' @description
        #' moves window start and end to region with as few as possible precursor masses
        #' @param digigits mass precision
        #' @param max number of bins
        #' @param plot default TRUE
        #' @param overlap between windows
        #' @return data.frame with optimized windows
        optimizeWindows = function(digits = 1,
                                   maxbin = 15,
                                   plot = FALSE,
                                   overlap = 0.) {
            "optimizes the windows"
            data.frame(readjustWindows(
                asTable(overlap = overlap) ,
                masses,
                digits = digits,
                maxbin = maxbin,
                plot = plot
            ))
        },
        #' @description
        #' shows the generated DIA cycle
        #' @param overlap size of window overlap default 1 m/z
        showCycle = function(overlap = 1) {
            tmp <- .self$asTable(overlap = overlap)
            graphics::plot(
                c(1, nrow(tmp) + 1),
                c(min(tmp$from), max(tmp$to)),
                type = "n",
                xlab = "window #",
                ylab = "mz",
                main = "DIA Cycle"
            )
            rect(seq_len(nrow(tmp)), tmp$from, seq_len(nrow(tmp)) + 1, tmp$to)
        }
    )
)

Try the prozor package in your browser

Any scripts or data that you put into this service are public.

prozor documentation built on Dec. 11, 2021, 9:51 a.m.