Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.width = 7,
fig.height = 5
)
## ----setup, eval=FALSE--------------------------------------------------------
# # Install ggpicrust2
# if (!requireNamespace("ggpicrust2", quietly = TRUE)) {
# devtools::install_github("cafferychen777/ggpicrust2")
# }
#
# # Install required Bioconductor packages
# if (!requireNamespace("BiocManager", quietly = TRUE)) {
# install.packages("BiocManager")
# }
#
# BiocManager::install(c("fgsea", "clusterProfiler", "enrichplot", "DOSE", "pathview"))
#
# # Load the package
# library(ggpicrust2)
# library(dplyr)
# library(ggplot2)
## ----basic-gsea, eval=FALSE---------------------------------------------------
# # Load example data
# data(ko_abundance)
# data(metadata)
#
# # Prepare abundance data
# abundance_data <- as.data.frame(ko_abundance)
# rownames(abundance_data) <- abundance_data[, "#NAME"]
# abundance_data <- abundance_data[, -1]
#
# # Run GSEA analysis
# gsea_results <- pathway_gsea(
# abundance = abundance_data,
# metadata = metadata,
# group = "Environment",
# pathway_type = "KEGG",
# method = "fgsea",
# rank_method = "signal2noise",
# nperm = 1000,
# min_size = 10,
# max_size = 500,
# p.adjust = "BH",
# seed = 42
# )
#
# # View the top results
# head(gsea_results)
## ----annotate-gsea, eval=FALSE------------------------------------------------
# # Annotate GSEA results
# annotated_results <- gsea_pathway_annotation(
# gsea_results = gsea_results,
# pathway_type = "KEGG"
# )
#
# # View the annotated results
# head(annotated_results)
## ----barplot, eval=FALSE------------------------------------------------------
# # Create a barplot of the top enriched pathways
# barplot <- visualize_gsea(
# gsea_results = annotated_results,
# plot_type = "barplot",
# n_pathways = 20,
# sort_by = "p.adjust"
# )
#
# # Display the plot
# barplot
## ----dotplot, eval=FALSE------------------------------------------------------
# # Create a dotplot of the top enriched pathways
# dotplot <- visualize_gsea(
# gsea_results = annotated_results,
# plot_type = "dotplot",
# n_pathways = 20,
# sort_by = "p.adjust"
# )
#
# # Display the plot
# dotplot
## ----enrichment-plot, eval=FALSE----------------------------------------------
# # Create an enrichment plot for a specific pathway
# enrichment_plot <- visualize_gsea(
# gsea_results = annotated_results,
# plot_type = "enrichment_plot",
# n_pathways = 10,
# sort_by = "NES"
# )
#
# # Display the plot
# enrichment_plot
## ----compare-gsea-daa, eval=FALSE---------------------------------------------
# # Run DAA analysis
# daa_results <- pathway_daa(
# abundance = abundance_data,
# metadata = metadata,
# group = "Environment",
# daa_method = "ALDEx2"
# )
#
# # Annotate DAA results
# annotated_daa_results <- pathway_annotation(
# pathway = "KO",
# daa_results_df = daa_results,
# ko_to_kegg = TRUE
# )
#
# # Compare GSEA and DAA results
# comparison <- compare_gsea_daa(
# gsea_results = annotated_results,
# daa_results = annotated_daa_results,
# plot_type = "venn",
# p_threshold = 0.05
# )
#
# # Display the comparison plot
# comparison$plot
#
# # View the comparison results
# comparison$results
## ----integrated-analysis, eval=FALSE------------------------------------------
# # Run integrated analysis
# integrated_results <- ggpicrust2_extended(
# data = ko_abundance,
# metadata = metadata,
# group = "Environment",
# pathway = "KO",
# daa_method = "LinDA",
# ko_to_kegg = TRUE,
# run_gsea = TRUE,
# gsea_params = list(
# method = "fgsea",
# rank_method = "signal2noise",
# nperm = 1000
# )
# )
#
# # Access DAA results
# daa_results <- integrated_results$daa_results
#
# # Access GSEA results
# gsea_results <- integrated_results$gsea_results
#
# # Access plots
# daa_plot <- integrated_results$daa_plot
# gsea_plot <- integrated_results$gsea_plot
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.