pathway_gsea | R Documentation |
This function performs Gene Set Enrichment Analysis (GSEA) on PICRUSt2 predicted functional data to identify enriched pathways between different conditions.
pathway_gsea(
abundance,
metadata,
group,
pathway_type = "KEGG",
method = "fgsea",
rank_method = "signal2noise",
nperm = 1000,
min_size = 10,
max_size = 500,
p.adjust = "BH",
seed = 42
)
abundance |
A data frame containing KO/EC/MetaCyc abundance data, with features as rows and samples as columns |
metadata |
A data frame containing sample metadata |
group |
A character string specifying the column name in metadata that contains the grouping variable |
pathway_type |
A character string specifying the pathway type: "KEGG", "MetaCyc", or "GO" |
method |
A character string specifying the GSEA method: "fgsea", "GSEA", or "clusterProfiler" |
rank_method |
A character string specifying the ranking statistic: "signal2noise", "t_test", "log2_ratio", or "diff_abundance" |
nperm |
An integer specifying the number of permutations |
min_size |
An integer specifying the minimum gene set size |
max_size |
An integer specifying the maximum gene set size |
p.adjust |
A character string specifying the p-value adjustment method |
seed |
An integer specifying the random seed for reproducibility |
A data frame containing GSEA results
## Not run:
# Load example data
data(ko_abundance)
data(metadata)
# Prepare abundance data
abundance_data <- as.data.frame(ko_abundance)
rownames(abundance_data) <- abundance_data[, "#NAME"]
abundance_data <- abundance_data[, -1]
# Run GSEA analysis
gsea_results <- pathway_gsea(
abundance = abundance_data,
metadata = metadata,
group = "Environment",
pathway_type = "KEGG",
method = "fgsea"
)
# Visualize results
visualize_gsea(gsea_results, plot_type = "enrichment_plot", n_pathways = 10)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.