R/processing.R

Defines functions get.factor.list getC.rq getC.tP refine.extraction getS.OSD chrom.isoreg

#' @importFrom osd normalize

chrom.isoreg <- function(A, tresh=0.2)
{
  
  A <- as.matrix(A)
  if(all(is.na(A))) return(A)
  if(ncol(A)==0) return(A)
  if(sum(A)==0) return(A)
  #max.ind <- apply(abs(A),2,which.max)
  #max.sign <- sweep(A,2,max.ind)
  #mul.sign <- diag(as.matrix(apply(as.matrix(A[max.ind,]),2,sign)))
  #A <- sweep(as.matrix(A),2,mul.sign,"*")
  #x <- A[,2]
  
  A <- apply(as.matrix(A),2,function(x)
  {			
    if(any(diff(x)>0))
    {
      if(which.max(x)==1) {x[1:which(diff(x)>0)[1]] <- 0}
      xr <- x[length(x):1]
      if(which.max(x)==1)
      {
        xr[1:which(diff(xr)>0)[1]] <- 0
        x <- xr[length(x):1]
      }
    }	
    x			
  })	
  
  
  Ar <- apply(as.matrix(A),2,function(x)
  {		
    x[x<0] <- 0
    max.x <- max(x, na.rm=T)
    x <- normalize(x)
    x.rigth <- x[which.max(x):1]
    if(which.max(x)<length(x)) {x.left <- x[(which.max(x)+1):length(x)]}else{x.left <- NA}
    
    if(length(x.rigth)>2)
    {
      flag.isoreg <- F
      for(i in 2:length(x.rigth))
      {
        if(x.rigth[i]<tresh) flag.isoreg=T
        if(flag.isoreg) 
          if(x.rigth[i]>x.rigth[i-1]) x.rigth[i] <- x.rigth[i-1]
      }
    }
    if(length(x.left)>2)
    {
      flag.isoreg <- F
      for(i in 2:length(x.left))
      {
        if(x.left[i]<tresh) flag.isoreg=T
        if(flag.isoreg) 
          if(x.left[i]>x.left[i-1]) x.left[i] <- x.left[i-1]
      }
    }
    x <- c(x.rigth[length(x.rigth):1],x.left)
    del.na <- which(is.na(x)==T)
    if(length(del.na)!=0) x <- x[-del.na]
    #length(x)
    #plot(x, type="l")
    x <- x*max.x
    x
  })
  
  xmax.vect <- apply(Ar,2,max)
  Ar.diff <- normalize(apply(Ar,2,diff))
  Ar.n <- apply(Ar.diff,2, function(x){	
    x[which(abs(x[1:which.max(x)])<0.01)] <- 0
    x[(which.min(x)-1)+ which(abs(x[which.min(x):length(x)])<0.01)] <- 0
    x <- cumsum(c(0,x))
    x[x<0] <- 0
    x[normalize(x)<0.01] <- 0
    x
  })
  
  Ar.n <- sweep(normalize(Ar.n),2,xmax.vect,"*")
  Ar.n	
}

#' @importFrom stats prcomp

getS.OSD <- function(mod.c, D, ref.response=NULL, beta=2,cutoff=0.05)
{	
  #beta <- 2
  thr.det <- cutoff
  an.win <- D[which(normalize(mod.c)>thr.det),]
  an.win[an.win<0] <- 0
  if(dim(as.matrix(an.win))[1]<3 | dim(as.matrix(an.win))[2]<3) return(rep(0,ncol(D)))
  mod.l <- mod.c[which(normalize(mod.c)>thr.det)]	
  comp.m <- an.win^(1/beta)
  if(any(is.na(comp.m))) comp.m[is.na(comp.m)] <- 0
  pr.an <- try(prcomp(comp.m), silent=T)
  if(inherits(pr.an,"try-error")) {return(rep(0,ncol(D)))}
  
  if(is.null(ref.response))
  {
    mat.cor <- suppressWarnings(cor(mod.l, pr.an$x))
    cor.vect <- abs(mat.cor)
    cor.vect[summary(pr.an)$importance[2,]<0.005] <- 0
    i.comp <- order(cor.vect, decreasing=T)
  }else{
    mat.cor <- suppressWarnings(cor(ref.response, pr.an$rotation))
    cor.vect <- abs(mat.cor)
    cor.vect[summary(pr.an)$importance[2,]<0.005] <- 0
    i.comp <- order(cor.vect, decreasing=T)	
  }	
  
  spc <- pr.an$rotation[,i.comp[1]]*sign(mat.cor)[i.comp[1]]  #*pr.an$sdev[1]
  
  spc[spc<0] <- 0 
  spc <- spc^beta
  spc <- refine.extraction(D, mod.c, spc)
  spc <- normalize(spc)#*apex.h		
  spc
}

refine.extraction <- function(m.data, c.model, s.model)
{
  
  neg.sign.flag <- any(sign(normalize(m.data[which.max(c.model),])-normalize(s.model))==(-1))
  its <- 1
  while(neg.sign.flag)
  {
    substr <- normalize(m.data[which.max(c.model),]) - normalize(s.model)
    substr[substr>0] <- 0
    s.model <- normalize(s.model) + substr
    neg.sign.flag <- any(sign(normalize(m.data[which.max(c.model),])-normalize(s.model))==(-1))
    its <- its + 1
    if(its>10) break
  }
  s.model[s.model<0] <- 0
  
  s.model	
}

getC.tP <- function(winD, target.s)
{
  winD[,which(normalize(target.s)<0.01)] <- 0
  winDU <- winD^0.5
  target.sU <- target.s^0.5
  winDU[is.na(winDU)] <- 0
  target.sU[is.na(target.sU)] <- 0
  
  Cps <- as.vector(winDU %*% target.sU)^2
  Cps <- normalize(Cps)
  target.s <- target.s/max(target.s)
  
  max.I <- t(as.matrix(target.s)^2) %*% as.matrix(winD[which.max(Cps),]^2)
  if(is.na(max.I)) max.I <- 0
  max.I <- sqrt(max.I)
  if(max.I>max(winD[which.max(Cps),])) max.I <- max(winD[which.max(Cps),])
  Cps <- suppressWarnings(Cps*max.I)
  
  Cps		
}

#' @importFrom stats coefficients
#' @importFrom quantreg rq

getC.rq <- function(winD, target.s)
{
  target.s <- normalize(target.s)
  winD[,which(target.s<0.005)] <- 0
  
  #target.s <- target.s/max(target.s)	
  #winD[,which(target.s<0.005)] <- 0
  
  Cps <- apply(winD, 1, function(x) as.numeric(coefficients(rq(x~target.s, method="fn"))[2]))
  Cps[which(Cps<0)] <- 0
  Cps[which(is.na(Cps))] <- 0
  Cps <- normalize(Cps)
  
  max.I <- as.vector(t(as.matrix(target.s)^2) %*% as.matrix(winD[which.max(Cps),]^2))
  if(is.na(max.I)) max.I <- 0
  max.I <- sqrt(max.I)
  if(max.I>max(winD[which.max(Cps),])) max.I <- max(winD[which.max(Cps),])
  Cps <- Cps*max.I	
  
  Cps			
}

#' @importFrom stats dnorm cov
#' @importFrom signal hanning
#' @importFrom HiClimR fastCor

get.factor.list <- function(sampleRD, analysis.window, plotting=FALSE, down.sample, virtual.scans.ps)
{
  ## Down sampling:
  if(down.sample){
    newScansPerSecond <- sampleRD@scans.per.second/(sampleRD@min.peak.width/10)
    sampleRD@min.peak.width <- (sampleRD@min.peak.width/sampleRD@scans.per.second)*newScansPerSecond 
    original.time.seq <- seq(0,nrow(sampleRD@data)/sampleRD@scans.per.second/60, length.out=nrow(sampleRD@data))
    time.seq <- seq(0,nrow(sampleRD@data)/sampleRD@scans.per.second/60,by=1/(newScansPerSecond*60))
    sampleRD@scans.per.second <- newScansPerSecond 
    selDownPoints <- sapply(time.seq, function(x) which.min(abs(x-original.time.seq)))
    sampleRD@data <- sampleRD@data[selDownPoints,]
  }
  ##
  
  ## Virtualization of scans per second:
  
  if(!is.null(virtual.scans.ps)){
    chromTime <- 1:nrow(sampleRD@data)*sampleRD@scans.per.second
    time.seq <- seq(min(chromTime, na.rm=T),max(chromTime, na.rm=T),by=1/(virtual.scans.ps))
    chromD <- apply(sampleRD@data,2,function(x) signal::pchip(chromTime, x, time.seq))
    sampleRD@data <- chromD
    sampleRD@min.peak.width <- (sampleRD@min.peak.width/sampleRD@scans.per.second)*virtual.scans.ps 
    sampleRD@scans.per.second <- virtual.scans.ps
  }
  
  if(length(analysis.window)==1 & analysis.window[1]==0){
    from.s <- 1
    to.s <- nrow(sampleRD@data)
  }else{
    from.s <- analysis.window[1]*sampleRD@scans.per.second*60 - sampleRD@start.time*sampleRD@scans.per.second
    if(trunc(from.s)==0) from.s <- 1
    to.s <- analysis.window[2]*sampleRD@scans.per.second*60 - sampleRD@start.time*sampleRD@scans.per.second	
    if(from.s<1) from.s <- 1
    if(to.s>nrow(sampleRD@data)) to.s <- nrow(sampleRD@data)	
  }
  
  #if(length(intersect(c(trunc(from.s),trunc(to.s)),1:nrow(sampleRD@data)))!=2)
  #{
  #	min.t <- sampleRD@start.time/60
  #	max.t <- round(nrow(sampleRD@data)/sampleRD@scans.per.second/60 + min.t,2)
  #	error.txt <- paste("Analysis window out of limits, time must be between ", min.t ," and ", max.t ,sep="")
  #	stop(error.txt)
  #}
  
  ## Pre-processing
  
  sampleRD@data <- sampleRD@data[trunc(from.s):trunc(to.s),]
  sampleRD@data <- pre.process(sampleRD@data, sampleRD@min.peak.width)
  
  ## Parameters:
  
  Chrm.RawData <- sampleRD@data
  sigma.scans <-  sampleRD@min.peak.width#*0.75
  #sigma.scans <- (1/60)*5*60*0.75
  #sampleRD@min.peak.height <- 5000
  
  Scan.K <- sigma.scans	
  ksp <- vector()
  sewq <- seq(0.1,1000,0.01)
  for(i in 1:length(sewq))
  {
    krn <- normalize(dnorm(1:nrow(Chrm.RawData),trunc(nrow(Chrm.RawData)/2),sewq[i]))
    #krn <- normalize(dnorm(1:length(BIC.signal),trunc(length(BIC.signal)/2),sewq[i]))
    k.span <- trunc((length(which(normalize(krn)>0.01))/2)+0.5)	 	
    ksp[i] <- k.span
    if(k.span - Scan.K >0) break
  }
  sigma.model <- sewq[(i-1)]
  
  ## Match Filter:
  
  krn <- normalize(dnorm(1:nrow(Chrm.RawData),trunc(nrow(Chrm.RawData)/2),sigma.model))
  k.span <- trunc((length(which(normalize(krn)>0.01))/2)+0.5)	 	
  local.kernel.o <- krn[(trunc(nrow(Chrm.RawData)/2)-k.span):(trunc(nrow(Chrm.RawData)/2)+(k.span-0))]
  local.kernel <- local.kernel.o
  
  ZeroPaddingMat <- matrix(0,nrow=(k.span+1), ncol=ncol(Chrm.RawData))
  Chrm.RawData.a <- rbind(ZeroPaddingMat,Chrm.RawData,ZeroPaddingMat)
  mz.index.vector <- (k.span+1):(nrow(Chrm.RawData)-k.span)
  
  mf <- vector()
  mf1 <- vector()
  for(i in (k.span+1):(nrow(Chrm.RawData)-k.span))
  {
    local.kernel <- local.kernel.o
    local.matrix <- Chrm.RawData.a[(i-k.span):(i+k.span),]
    local.matrix <- local.matrix#*hanning(nrow(local.matrix))
    
    cov.m <- cov(t(local.matrix))   
    is.zeroitems <- unique(c(which(apply(cov.m,1,max)==0),which(apply(cov.m,2,max)==0)))
    
    if(length(is.zeroitems)!=0) 
    {
      cov.m <- cov.m[-is.zeroitems,-is.zeroitems]
      local.kernel <- local.kernel[-is.zeroitems]	
      local.matrix <- local.matrix[-is.zeroitems,]
    }
    if(length(cov.m)==1) next
    
    solv.m <- try(solve(cov.m), silent=T)
    if("try-error" %in% class(solv.m)) {
      mf[i] <- 0
      next
    }
    
    mf[i] <- sum((t(as.matrix(local.kernel)) %*% solv.m %*% as.matrix(local.matrix)) )
  }
  
  Cmp.SetPoints <- which(diff(sign(diff(mf, na.pad = FALSE)), na.pad = FALSE) > 0) + 1
  noise.points <- which(apply(Chrm.RawData.a,1,max)[Cmp.SetPoints]<=sampleRD@min.peak.height)
  if(length(noise.points)!=0) Cmp.SetPoints <- Cmp.SetPoints[-noise.points]
  
  ## Match Filter Correlation Filtering:
  
  pk.out <- vector()
  indx <- 1
  for(k in Cmp.SetPoints)
  {
    span.len <- k.span*2
    window.span <- (k-span.len):(k+span.len)
    if(min(window.span)<1) window.span <- window.span[-which(window.span<1)]
    if(max(window.span)>nrow(Chrm.RawData.a)) window.span <- window.span[-which(window.span>ncol(Chrm.RawData.a))]
    Cmp.Matrix <- Chrm.RawData.a[window.span,] #*hamming(length(window.span))
    
    krn <- normalize(dnorm(1:nrow(Chrm.RawData.a),k,sigma.model))
    
    SubModel <- (krn[window.span])
    CrM <- suppressWarnings(cor(SubModel,Cmp.Matrix))
    
    Kmax <- which.max(CrM)
    if(CrM[1,Kmax]<0.5)
    {
      pk.out <- c(pk.out,indx) 
    }else{
      peakMax <- (k-span.len) + (which.max(Cmp.Matrix[,Kmax]) - 1)
      Cmp.SetPoints[indx] <- peakMax
    }
    indx <- indx + 1	
  }
  if(length(pk.out)!=0) Cmp.SetPoints <- Cmp.SetPoints[-pk.out]	
  
  ## MOSD:	
  
  C.matrix <- matrix(0,nrow=nrow(Chrm.RawData.a), ncol=0)
  S.matrix <- matrix(0,nrow=ncol(Chrm.RawData.a), ncol=0)
  
  #ini.pb.val <- length(Cmp.SetPoints)/2
  iteration <- length(Cmp.SetPoints)
  if(iteration<=1) {
    feature.list <- data.frame(matrix(nrow=0, ncol=6))
    colnames(feature.list) <- c("ID","RT","Area","Peak Height","Spectra","Profile")	
    return(feature.list)
  } 
  
  for(k in Cmp.SetPoints)
  {
    iteration <- iteration + 1
    
    span.len <- k.span*2
    window.span <- (k-span.len):(k+span.len) - 1
    if(min(window.span)<1) window.span <- window.span[-which(window.span<1)]
    if(max(window.span)>nrow(Chrm.RawData.a)) window.span <- window.span[-which(window.span>ncol(Chrm.RawData.a))]
    Cmp.Matrix <- Chrm.RawData.a[window.span,]#*hamming(length(window.span))
    
    ## OSD:
    
    krn <- normalize(dnorm(1:nrow(Chrm.RawData.a),k,sigma.model))
    
    SubModel <- (krn[window.span])
    SubModel.Spectra <- getS.OSD(SubModel,Cmp.Matrix*hanning(nrow(Cmp.Matrix)),cutoff=0.15)
    
    S.cl <- SubModel.Spectra 
    #C.mod <- getC.tP(Cmp.Matrix, S.cl)
    #C.mod <- getC.rq(Cmp.Matrix, S.cl)
    suppressWarnings(C.mod <- try(getC.rq(Cmp.Matrix, S.cl), silent=T))
    if(inherits(C.mod,"try-error")) next
    
    #matplot(Cmp.Matrix, type="l", col="gray", lty=1)	
    #matplot(C.mod, type="l", lty=1, add=T)
    
    if(which.max(C.mod)==1) next
    if(which.max(C.mod)==length(C.mod)) next
    
    C.mod <- chrom.isoreg(C.mod)	
    #C.mod <- C.mod*hanning(nrow(C.mod))
    
    S.matrix <- cbind(S.matrix,as.matrix(SubModel.Spectra))
    C.matrix.aux <- matrix(0,nrow=nrow(Chrm.RawData.a), ncol=1)
    C.matrix.aux[window.span,] <- C.mod
    C.matrix <- cbind(C.matrix, C.matrix.aux)
    
    
  }
  
  ## Duplicity Filter:
  
  preCouts <- which(apply(C.matrix,2,max)==0)
  if(length(preCouts)!=0)
  {
    C.matrix <- C.matrix[,-preCouts]
    S.matrix <- S.matrix[,-preCouts]
  }	
  
  iteration <- ncol(C.matrix)*2
  
  CorGen <- suppressWarnings(cor(C.matrix))
  
  C.out.inds <- vector()
  for(j in 1:ncol(C.matrix))
  {	
    iteration <- iteration + 1
    
    if(j %in% C.out.inds) next
    #if(j %in% C.ok.inds) next
    conf <- which(CorGen[,j]>0.85)
    if(length(conf)==1) next
    
    combi.mat <- sapply(1:(2^length(conf)), function(i) as.numeric(intToBits(i))[1:length(conf)])
    sel.inds <- which(normalize(rowSums(C.matrix[,conf]))>0.01)
    if(length(sel.inds)==1) 
    {
      C.out.inds <- c(C.out.inds,conf)
      next
    }
    SubSData <- Chrm.RawData.a[sel.inds,]
    maxFac <- max(SubSData)
    SubSData <- SubSData/maxFac
    SubCMod <- C.matrix[sel.inds,conf]/maxFac
    SubSMod <- S.matrix[,conf]
    
    recMatrix <- sapply(1:ncol(SubCMod),function(x) as.vector(SubCMod[,x] %*% t(SubSMod[,x])))
    
    cov.v <- vector()
    cov.e <- vector()
    for(i in 1:(ncol(combi.mat)-1))
    {
      cov.total.m <- rowSums(as.matrix(recMatrix[,which(combi.mat[,i]==1)]))	
      cov.v[i] <- sum((as.vector(SubSData) - cov.total.m)^2)	
    }
    local.ko.inds <- which(combi.mat[,which.min(cov.v)]!=1)
    C.out.inds <- c(C.out.inds,conf[local.ko.inds])
    
  }
  
  C.matrix <- C.matrix[-(1:(k.span+1)),]
  
  if(trunc(from.s)>1)
  {
    IniMat <- matrix(0,nrow=(trunc(from.s)-1), ncol=ncol(C.matrix))
    C.matrix <- rbind(IniMat,C.matrix)
  }
  
  
  ## CREATING TABLE:
  
  window.features <- list(profile=C.matrix[,-C.out.inds], spectra=S.matrix[,-C.out.inds])
  
  ## Peak Position
  iter.ind <- seq(1,ncol(window.features$profile))
  models.maximas <- unlist(apply(window.features$profile,2,which.max))
  #models.maximas <- models.maximas + (trunc(from.s) - 1)
  
  ## Quantification
  #models.areas <- sapply(iter.ind,function(j){ sum(as.matrix(window.features$profile)[,j]%*%t(as.matrix(window.features$spectra)[,j])) })
  
  colSum.C <- colSums(window.features$profile)
  #models.areas <- sapply(iter.ind,function(j){ sum(colSum.C[j]*t(as.matrix(window.features$spectra)[,j])) })	
  models.areas <- colSum.C	
  
  ## Peak Height
  models.peakheight <-  apply(as.matrix(window.features$profile),2, function(x) max(x, na.rm=T))
  
  ## Spectra:
  models.spectra <- apply(as.matrix(window.features$spectra),2,function(spectra){
    spectra.index <- which(normalize(spectra)>0.005) 
    spectra.pos <- spectra.index + (sampleRD@min.mz - 1)
    spectra.int <- round(spectra[spectra.index]*1000)
    spectra.text <- paste(sweep(as.matrix(spectra.pos),1,as.matrix(spectra.int),"paste.sp"), collapse=" ")
    spectra.text
  })	
  
  ## Profile:
  models.profile <- apply(as.matrix(window.features$profile),2,function(profile){
    profile.index <- which(normalize(profile)>0.0001) 
    profile.pos <- ((profile.index)/sampleRD@scans.per.second/60) + (sampleRD@start.time/60)
    profile.int <- profile[profile.index]/max(profile)
    profile.text <- paste(sweep(as.matrix(profile.pos),1,as.matrix(profile.int),"paste.sp"), collapse=" ")
    profile.text
  })	
  
  feature.list <- data.frame()
  
  feature.prelist <- apply(as.matrix(iter.ind),1,function(window.number){
    items <- length(models.maximas[window.number])
    subfeat.list <- matrix(0,ncol=6,nrow=items)		
    subfeat.list[,2] <- models.maximas[window.number]
    subfeat.list[,3] <- round(models.areas[window.number], digits=0)
    subfeat.list[,4] <- round(models.peakheight[window.number], digits=0)
    subfeat.list[,5] <- models.spectra[window.number]
    subfeat.list[,6] <- models.profile[window.number]
    subfeat.list
  })
  
  feature.list <- as.data.frame(t(feature.prelist))
  feature.list[,1] <- seq(1,nrow(feature.list))
  feature.list[,2] <- round((as.numeric(as.vector((feature.list[,2])))/sampleRD@scans.per.second)/60 + (sampleRD@start.time/60), digits=4)	
  colnames(feature.list) <- c("ID","RT","Area","Peak Height","Spectra","Profile")	
  
  feature.list
  
  
}	

Try the erah package in your browser

Any scripts or data that you put into this service are public.

erah documentation built on June 22, 2024, 11:01 a.m.