Nothing
###########################################################################/**
# @set "class=RawGenomicSignals"
# @RdocMethod segmentByGLAD
#
# @title "Segment copy numbers using the GLAD method"
#
# \description{
# @get "title" of the \pkg{GLAD} package.
# }
#
# @synopsis
#
# \arguments{
# \item{...}{Additional arguments passed to the segmentation function.}
# \item{flavor}{A @character string specifying what flavor of
# GLAD should be used.}
# \item{verbose}{See @see "R.utils::Verbose".}
# }
#
# \value{
# Returns the fit object.
# }
#
# \details{
# Internally @see "GLAD::glad" or @see "GLAD::daglad" is used to
# segment the signals.
# This segmentation method does not support weighted segmentation.
# }
#
# @author
#
# \seealso{
# @seeclass
# }
#
# @keyword IO
#*/###########################################################################
setMethodS3("segmentByGLAD", "RawGenomicSignals", function(this, ..., flavor=c("glad", "daglad"), cache=FALSE, force=FALSE, verbose=FALSE) {
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Validate arguments
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Argument 'flavor':
flavor <- match.arg(flavor)
# Argument 'verbose':
verbose <- Arguments$getVerbose(verbose)
if (verbose) {
pushState(verbose)
on.exit(popState(verbose))
}
verbose && enter(verbose, "Segmenting")
verbose && cat(verbose, "Chromosomes: ", hpaste(getChromosomes(this)))
# This is a single-chromosome method. Assert that is the case.
assertOneChromosome(this)
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Retrieving segmentation function
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
verbose && enter(verbose, "Retrieving the fit function")
pkgName <- "GLAD"
# Assert that package is installed
isPackageInstalled(pkgName) || throw("Package is not installed: ", pkgName)
pkg <- packageDescription(pkgName)
pkgVer <- pkg$Version
pkgDetails <- sprintf("%s v%s", pkgName, pkgVer)
methodName <- flavor
verbose && cat(verbose, "Method: ", methodName)
verbose && cat(verbose, "Package: ", pkgDetails)
# We need to load package
requireWithMemory(pkgName) || throw("Package not loaded: ", pkgName)
# Get the fit function for the segmentation method
envir <- as.environment(sprintf("package:%s", pkgName))
fitFcn <- get(methodName, mode="function", envir=envir)
verbose && str(verbose, "Function: ", fitFcn)
verbose && exit(verbose)
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Retrieving data
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
verbose && enter(verbose, "Extracting data of interest")
data <- extractDataForSegmentation(this, ..., verbose=less(verbose, 5))
verbose && str(verbose, data)
verbose && exit(verbose)
sampleName <- attr(data, "sampleName")
chromosome <- data$chromosome[1]
nbrOfLoci <- nrow(data)
hasWeights <- !is.null(data$w)
verbose && cat(verbose, "Sample name: ", sampleName)
verbose && cat(verbose, "Chromosome: ", chromosome)
verbose && cat(verbose, "Number of loci: ", nbrOfLoci)
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Setting up data argument to pass to segmentation function
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
verbose && enter(verbose, "Setting up method arguments")
verbose && enter(verbose, "Setting up ", pkgName, " data structure")
cnData <- data.frame(
LogRatio=data$y,
PosOrder=1:nbrOfLoci,
Chromosome=data$chromosome,
PosBase=data$x
# Add (chipType, units) identifiers to be able to backtrack SNP IDs etc.
# chipType=as.factor(chipType),
# units=units,
# sdTheta=data$sdTheta
)
verbose && str(verbose, cnData)
cnData <- GLAD::as.profileCGH(cnData)
verbose && str(verbose, cnData)
verbose && exit(verbose)
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Identifying known arguments
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
verbose && enter(verbose, "Identifying known arguments")
formals <- formals(fitFcn)
if (isGenericS3(fitFcn)) {
methods <- methods(methodName)
methods <- intersect(methods, sprintf("%s.%s", methodName, c("default", class(cnData))))
if (length(methods) > 0L) {
formals <- lapply(methods, FUN=formals)
formals <- Reduce(append, formals)
formals <- formals[!duplicated(names(formals))]
}
}
verbose && cat(verbose, "Formals:")
verbose && str(verbose, formals)
verbose && exit(verbose)
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Weights
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
if (hasWeights) {
# Verify that weights are supported (not yet)
if (!is.element("weights", names(formals))) {
hasWeights <- FALSE
msg <- paste("Weights detected but ignored, because the available segmentation function ('", methodName, "()') does not support weights. Check with a more recent version of the package: ", pkgDetails, sep="")
verbose && cat(verbose, "WARNING: ", msg)
warning(msg)
}
} # if (hasWeights)
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Setting up additional arguments to pass to segmentation function
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
params <- list()
if (hasWeights) {
params$weights <- data$w
verbose && cat(verbose, "Additional segmentation arguments:")
verbose && str(verbose, params)
}
userArgs <- list(...)
if (length(userArgs) > 0) {
verbose && cat(verbose, "User and segmentation arguments:")
verbose && str(verbose, userArgs)
# Assign/overwrite by user arguments
for (ff in names(userArgs)) {
params[[ff]] <- userArgs[[ff]]
}
}
# Cleaning out unknown parameters?
if (!any(names(formals) == "...")) {
keep <- (names(params) %in% names(formals))
params <- params[keep]
}
signatures <- list()
signatures$fitFcn <- list(
pkgName=pkgName,
methodName=methodName,
formals=formals,
pkgDetails=pkgDetails
)
signatures$data <- cnData
signatures$params <- params
args <- c(list(cnData), params, list(verbose=as.logical(verbose)))
verbose && cat(verbose, "Final arguments:")
verbose && str(verbose, args)
verbose && exit(verbose)
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Now, check for cached results
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
verbose && enter(verbose, "Looking for cached results")
key <- list(method="segmentByGLAD", class=class(this)[1],
signatures=signatures)
dirs <- c("aroma.cn", class(this)[1])
if (!force) {
res <- loadCache(key, dirs=dirs)
if (!is.null(res)) {
verbose && cat(verbose, "Found cached results.")
verbose && exit(verbose)
return(res)
}
}
verbose && exit(verbose)
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Calling segmentation function
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
verbose && enter(verbose, sprintf("Calling %s() of %s", methodName, pkgName))
# In case the method writes to stdout, we capture it
stdout <- capture.output({
# This works, but requires that one loads the package and that the
# function is not masked in the search() path.
t <- system.time({
fit <- do.call(methodName, args)
}, gcFirst = FALSE)
attr(fit, "processingTime") <- t
attr(fit, "pkgDetails") <- pkgDetails
})
verbose && cat(verbose, "Captured output that was sent to stdout:")
stdout <- paste(stdout, collapse="\n")
verbose && cat(verbose, stdout)
verbose && cat(verbose, "Fitting time (in seconds):")
verbose && print(verbose, t)
verbose && cat(verbose, "Fitting time per 1000 loci (in seconds):")
verbose && print(verbose, 1000*t/nbrOfLoci)
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Add segmentByGLAD() parameters
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
params <- list(
flavor = flavor
)
attr(fit, "params") <- params
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Estimating aroma parameters
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
verbose && enter(verbose, "Estimating aroma parameters")
# Estimate the standard deviation
sigma <- estimateStandardDeviation(this)
# Estimate the standard *error* for each segment
cnr <- extractCopyNumberRegions(fit)
cnrData <- as.data.frame(cnr)
regions <- as.matrix(cnrData[,c("start", "stop")])
nbrOfRegions <- nrow(regions)
# Not needed anymore
cnr <- cnrData <- NULL
x <- data$x
y <- data$y
naValue <- NA_real_
sigmas <- rep(naValue, times=nbrOfRegions)
for (kk in seq_len(nbrOfRegions)) {
keep <- which(regions[kk,1] < x & x <= regions[kk,2])
t <- y[keep]
t <- diff(t)
t <- median(t, na.rm=TRUE)/sqrt(2)
sigmas[kk] <- t
} # for (kk ...)
# Not needed anymore
x <- y <- t <- keep <- NULL
aromaEstimates <- list(
stddevAll = sigma,
stddevRegions = sigmas
)
attr(fit, "aromaEstimates") <- aromaEstimates
verbose && exit(verbose)
verbose && cat(verbose, "Results object:")
verbose && str(verbose, fit)
verbose && exit(verbose)
# Save cached results?
if (cache) {
saveCache(fit, key=key, dirs=dirs)
}
verbose && exit(verbose)
fit
}) # segmentByGLAD()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.