R/Image.EXTS.R

##############################################################################
# This source file contains all methods and classes related to the
# Image class (of EBImage).
#
# In aroma.affymetrix, the following methods are used:
# - getImage() for the matrix class.
# - display().
# - writeImage().
##############################################################################

# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
# EBImage Image class
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
setMethodS3("display", "Image", function(this, ...) {
  EBImage::display(this, ...)
}, protected=TRUE)


setMethodS3("writeImage", "Image", function(x, file, ...) {
  EBImage::writeImage(x, files=file, ...)
}, protected=TRUE)


setMethodS3("getImageData", "Image", function(this, ...) {
  x <- this@.Data
  x
}, protected=TRUE)


setMethodS3("setImageData", "Image", function(this, data, ...) {
  this@.Data <- data
  invisible(this)
}, protected=TRUE)



# given an input Image, transform to new RGB image based
# on list of colours given in argument 'palette'
# and lower and upper bounds given in 'lim'.
setMethodS3("colorize", "Image", function(this, palette=gray.colors(256), lim=c(-Inf,Inf), outlierCol="white", ..., verbose=FALSE) {
  # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  # Local functions
  # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  getColorMode <- function(what=c("grayscale", "color"), ...) {
    # Argument 'what':
    what <- match.arg(what)

    if (what == "grayscale") {
      colorMode <- EBImage::Grayscale
    } else if (what == "color") {
      colorMode <- EBImage::Color
    }

    colorMode
  } # getColorMode()


  # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  # Validate arguments
  # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  # Argument 'this':
  colorMode <- EBImage::colorMode(this)
  if (colorMode != EBImage::Grayscale) {
    throw("Cannot colorize() non-Grayscale Image: ", getColorMode("color"))
  }

  # Argument 'lim':
  lim <- Arguments$getDoubles(lim, length=c(2,2))
  .stop_if_not(lim[1] < lim[2])

  # Argument 'verbose':
  verbose <- Arguments$getVerbose(verbose)
  if (verbose) {
    pushState(verbose)
    on.exit(popState(verbose))
  }



  verbose && enter(verbose, "Colorizing grayscale Image")
  verbose && cat(verbose, "Image before:")
  verbose && cat(verbose, "Dimensions: ", paste(dim(this), collapse="x"))
  verbose && cat(verbose, "Color mode: ", colorMode)

  verbose && enter(verbose, "Creating RGB palette")
  verbose && cat(verbose, "Palette:")
  verbose && str(verbose, palette)


  verbose && enter(verbose, "Standardizing pixel intensities to [0,1]")
  # Data
  x <- getImageData(this)
  dim <- dim(x)
  verbose && cat(verbose, "Before:")
  verbose && print(verbose, summary(as.vector(x)))

  # Outliers
  if (lim[1] > -Inf)
    x[x < lim[1]] <- NA
  if (lim[2] < +Inf)
    x[x > lim[2]] <- NA
  x[!is.finite(x)] <- NA

  # Standardize to [0,1]
  r <- range(x, na.rm=TRUE)
  x <- (x - r[1])/(r[2]-r[1])
  verbose && cat(verbose, "After:")
  verbose && print(verbose, summary(as.vector(x)))

  # Sanity check
  .stop_if_not(all(0 <= x & x <= 1, na.rm=TRUE))
  verbose && exit(verbose)


  verbose && enter(verbose, "Binning image signals to [1,n]")
  # Standardize to [0,n] where n is number of bins
  n <- length(palette)
  verbose && cat(verbose, "Number of colors (in palette): n=", n)
  colorIdx <- x*n
  colorIdx <- as.integer(colorIdx)

  # Bin to [1,n] by moving any values at the left extreme to bin one.
  colorIdx[colorIdx == 0L] <- 1L

  verbose && print(verbose, summary(as.vector(colorIdx)))

  # Sanity check
  .stop_if_not(all(1 <= colorIdx & colorIdx <= n, na.rm=TRUE))
  verbose && exit(verbose)


  verbose && enter(verbose, "Mapping grayscale intensities to RGB intensities")
  verbose && cat(verbose, "Palette (R,G,B) in [0,1]x[0,1]x[0,1]:")
  paletteRGB <- col2rgb(palette)
  paletteRGB <- t(paletteRGB)
  paletteRGB <- paletteRGB / 256
  verbose && str(verbose, paletteRGB)
  verbose && exit(verbose)

  z <- paletteRGB[colorIdx,,drop=FALSE]

  # Sanity check
  .stop_if_not(dim(z)[1] == prod(dim))
  .stop_if_not(dim(z)[2] == 3L)
  dim(z) <- c(dim, 3L)

  verbose && cat(verbose, "Remapped pixel intensity:")
  verbose && str(verbose, z)

  # Sanity check
  z <- Arguments$getNumerics(z, range=c(0,1))
  verbose && exit(verbose)


  verbose && enter(verbose, "Creating a EBImage::Image object")
  img <- EBImage::Image(data=z, dim=dim(z), colormode=getColorMode("color"))

  verbose && exit(verbose)

  verbose && exit(verbose)

  img
}, protected=TRUE)




setMethodS3("interleave", "Image", function(this, what=c("none", "h", "v", "auto"), ..., verbose=TRUE) {
  # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  # Local functions
  # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  safeMeans <- function(x) {
    mean(x[is.finite(x)])
  }

  # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  # Validate arguments
  # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  # Argument 'what':
  what <- match.arg(what)

  # Argument 'verbose':
  verbose <- Arguments$getVerbose(verbose)
  if (verbose) {
    pushState(verbose)
    on.exit(popState(verbose))
  }


  # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  # Interleave
  # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  # Nothing todo?
  if (what == "none")
    return(this)

  verbose && enter(verbose, "Interleaving image")

  # Get image data
  z <- getImageData(this)
  verbose && cat(verbose, "z:")
  verbose && str(verbose, z)
  zDim <- dim(z)
  ndim <- length(zDim)
  dim(z) <- zDim

  # Sanity check
  .stop_if_not(ndim == 2 || ndim == 3)
  if (ndim == 2) {
    dim(z) <- c(zDim, 1L)
  }

  # if only PM locations have signal, add a fake row
  if (what == "auto") {
    verbose && enter(verbose, "Infering horizontal, vertical, or no interleaving")
    n <- 2*(nrow(z) %/% 2)
    idxOdd <- seq(from=1, to=n, by=2)
    zOdd <- z[idxOdd,,,drop=FALSE]
    zEven <- z[idxOdd+1,,,drop=FALSE]
    hOdd <- safeMeans(abs(zOdd))
    hEven <- safeMeans(abs(zEven))
    verbose && printf(verbose, "hOdd=%.2g\n", hOdd)
    verbose && printf(verbose, "hEven=%.2g\n", hEven)
    hRatio <- log(hOdd/hEven)
    if (is.na(hRatio)) hRatio <- Inf
    verbose && printf(verbose, "hRatio=%.2g\n", hRatio)

    n <- 2*(ncol(z) %/% 2)
#    n <- max(n, 40) # Infer from the first 40 rows.
    idxOdd <- seq(from=1, to=n, by=2)
    zOdd <- z[,idxOdd,,drop=FALSE]
    zEven <- z[,idxOdd+1,,drop=FALSE]
    vOdd <- safeMeans(abs(zOdd))
    vEven <- safeMeans(abs(zEven))
    verbose && printf(verbose, "vOdd=%.2g\n", vOdd)
    verbose && printf(verbose, "vEven=%.2g\n", vEven)
    vRatio <- log(vOdd/vEven)
    if (is.na(vRatio)) vRatio <- Inf
    verbose && printf(verbose, "vRatio=%.2g\n", vRatio)

    what <- "none"
    if (abs(vRatio) > abs(hRatio)) {
      if (abs(vRatio) > 0.25) {
        what <- "v"
      }
    } else {
      if (abs(hRatio) > 0.25) {
        what <- "h"
      }
    }
    verbose && cat(verbose, "what: ", what)
    verbose && exit(verbose)
  }

  isUpdated <- FALSE
  if (what == "h") {
    idxOdd <- seq(from=1, to=2*(nrow(z) %/% 2), by=2)
    z[idxOdd,,] <- z[idxOdd+1,,,drop=FALSE]
  } else if (what == "v") {
    idxOdd <- seq(from=1, to=2*(ncol(z) %/% 2), by=2)
    z[,idxOdd,] <- z[,idxOdd+1,,drop=FALSE]
  } else {
    isUpdated <- FALSE
  }

  if (ndim == 2) {
    z <- z[,,1,drop=TRUE]
  }

  # Update?
  if (isUpdated) {
    this <- setImageData(this, z)
  }

  verbose && exit(verbose)

  this
}, protected=TRUE)


setMethodS3("rescale", "Image", function(this, scale=1, blur=FALSE, ..., verbose=FALSE) {
  # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  # Validate arguments
  # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  # Argument 'scale':
  scale <- Arguments$getNumeric(scale, range=c(0,Inf))

  # Argument 'verbose':
  verbose <- Arguments$getVerbose(verbose)
  if (verbose) {
    pushState(verbose)
    on.exit(popState(verbose))
  }


  # Nothing to do?
  if (scale == 1)
    return(this)

  verbose && enter(verbose, "Rescaling image")
  verbose && sprintf(verbose, "Scale: %.2g\n", scale)
  img <- EBImage::resize(this, w=scale*dim(this)[1], blur=blur)
  verbose && exit(verbose)

  img
}, protected=TRUE)




# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
# Images from matrices
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
setMethodS3("getImage", "matrix", function(z, ..., palette=NULL) {
  img <- as.GrayscaleImage(z, ...)

  if (!is.null(palette)) {
    img <- colorize(img, palette=palette, ...)
  }

  img
}, protected=TRUE)



setMethodS3("createImage", "matrix", function(z, dim=NULL, colorMode=c("gray", "color"), ..., class=NULL, verbose=FALSE) {
  # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  # Validate arguments
  # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  # Argument 'z':
  z <- Arguments$getNumerics(z, range=c(0,1))

  # Argument 'class':
  knownClasses <- c("png::array", "EBImage::Image")
  if (is.null(class)) {
    class <- getOption(aromaSettings, "output/ImageClasses", knownClasses)
  }
  class <- match.arg(class, choices=knownClasses, several.ok=TRUE)

  # Argument 'dim':
  if (!is.null(dim)) {
    dim <- Arguments$getIntegers(dim, range=c(0,Inf), length=c(2,2))
  }

  # Argument 'colorMode':
  colorMode <- match.arg(colorMode)

  # Argument 'verbose':
  verbose <- Arguments$getVerbose(verbose)
  if (verbose) {
    pushState(verbose)
    on.exit(popState(verbose))
  }


  verbose && enter(verbose, "Creating image object")

  # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  # Create an EBImage Image object?
  # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  img <- NULL

  for (kk in seq_along(class)) {
    verbose && enter(verbose, sprintf("Class #%d ('%s') of %d",
                                        kk, class[kk], length(class)))

    if (class[kk] == "EBImage::Image") {
      tryCatch({
        if (colorMode == "gray") {
          colormode <- EBImage::Grayscale
        } else if (colorMode == "color") {
          colormode <- EBImage::Color
        }
        z <- t(z)
        if (is.null(dim)) {
          dim <- dim(z)
        }
        img <- EBImage::Image(data=z, dim=dim, colormode=colormode)
      }, error = function(ex) {
        verbose && print(verbose, ex)
      })
    } else if (class[kk] == "png::array") {
      if (is.null(dim)) {
        dim <- dim(z)
      }

      tryCatch({
        # You can create a 'RasterImage' object without the
        # 'png' package being installed, but we will need it
        # later if the image should be saved to file.
        # If only requested to display on screen or save by other
        # means, the 'png' package is not needed.  This calls
        # for an option to specify "what the purpose is".
        # /HB 2011-02-24
        img <- RasterImage(z)
        if (colorMode == "color") {
          img <- colorize(z)
        }
      }, error = function(ex) {
        verbose && print(verbose, ex)
      })
    }

    # Success?
    if (!is.null(img)) {
      verbose && cat(verbose, "Image was successfully created (using '%s').",
                                                                  class[kk])
      verbose && exit(verbose)
      break
    }

    verbose && exit(verbose)
  } # for (kk ...)

  if (is.null(img)) {
    throw("Failed to create image object trying several methods: ", paste(class, colllapse=", "))
  }

  verbose && exit(verbose)

  img
}, protected=TRUE)



###########################################################################/**
# @set "class=matrix"
# @RdocMethod as.GrayscaleImage
#
# @title "Creates a Grayscale (Color) Image from a matrix file"
#
# \description{
#  @get "title".
# }
#
# @synopsis
#
# \arguments{
#   \item{z}{A KxN @matrix.}
#   \item{transforms}{A @list of transform @functions.}
#   \item{interleaved}{A @character string specifying how the image data
#     should be interleaved, if at all.}
#   \item{scale}{A @numeric scale factor in (0,+Inf) for resizing the
#     imaging. If \code{1}, no resizing is done.}
#   \item{...}{Passed to \code{colorize()} for the object created.}
#   \item{verbose}{A @logical or a @see "R.utils::Verbose" object.}
# }
#
# \value{
#   Returns a bitmap image object.
# }
#
# @author "HB, KS"
#
# \seealso{
#   @seeclass
# }
#
# @keyword IO
# @keyword internal
#*/###########################################################################
setMethodS3("as.GrayscaleImage", "matrix", function(z, transforms=NULL, interleaved=c("none", "h", "v", "auto"), scale=1, ..., verbose=FALSE) {
  # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  # Validate arguments
  # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  # Argument 'transforms':
  if (!is.null(transforms)) {
    if (!is.list(transforms)) {
      transforms <- list(transforms)
    }
  }

  for (transform in transforms) {
    if (!is.function(transform)) {
      throw("Argument 'transforms' contains a non-function: ",
                                                        mode(transform))
    }
  }

  # Argument 'interleaved':
  interleaved <- match.arg(interleaved)

  # Argument 'scale':
  scale <- Arguments$getNumeric(scale, range=c(0,Inf))

  # Argument 'verbose':
  verbose <- Arguments$getVerbose(verbose)
  if (verbose) {
    pushState(verbose)
    on.exit(popState(verbose))
  }


  # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  # Read data
  # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  verbose && enter(verbose, "Creating Image object from matrix")

  # Transform signals?
  for (transform in transforms) {
    dim <- dim(z)
    z <- transform(z)
    dim(z) <- dim
  }

  # Transform into [0,1]
  # EBImage: "Grayscale values are assumed to be in the range [0,1],
  # although this is not a requirement in sense of data storage. Although,
  # many image processing functions will assume data in this range or will
  # generate invalid results for the data out of this range."
  verbose && enter(verbose, "Rescaling to [0,1]")
  r <- range(z, na.rm=TRUE, finite=TRUE)
  z <- (z - r[1])/(r[2]-r[1])
  verbose && summary(verbose, as.vector(z))
  verbose && exit(verbose)

  verbose && enter(verbose, "Censor +/-Inf to NA")
  z[is.infinite(z)] <- NA
  verbose && summary(verbose, as.vector(z))
  verbose && exit(verbose)

  # Create an Image object
  # Sanity check
  .stop_if_not(all(z >= 0, na.rm=TRUE))
  .stop_if_not(all(z <= 1, na.rm=TRUE))
  img <- createImage(z, colorMode="gray", ...)

  verbose && cat(verbose, "Create image object:")
  verbose && print(verbose, img)

  # if only PM locations have signal, add a fake row?
  img <- interleave(img, what=interleaved)

  # Scale (if scale == 1, it does nothing)
  img <- rescale(img, scale=scale)

  verbose && exit(verbose)

  img
}, protected=TRUE)

Try the aroma.core package in your browser

Any scripts or data that you put into this service are public.

aroma.core documentation built on June 25, 2024, 1:15 a.m.