Nothing
#Copyright © 2016 RTE Réseau de transport d’électricité
#' .importInputTS
#'
#' Private function that reads input time series for a given area
#'
#' @param area
#' single area name.
#' @param timeStep
#' desired time step.
#' @param opts
#' object of class "simOptions"
#' @param fileNamePattern
#' string representing the path where the time series are located. Must
#' contain one and only one "%s". This sequence will be replaced by the area
#' name when the function is executed.
#' @param colnames
#' name of the columns of the file.
#' @param inputTimeStep
#' actual time step of the input series.
#' @param fun
#' function to use when changing time step of the data.
#' @param type
#' "simple" or "matrix" if the data to import is a matrix of time series
#' representing the same variable
#'
#' @return
#' If colnames is missing or empty and the file to read is also missing or
#' empty, then the function returns NULL. In all other cases, it returns
#' a data.table with one line per timeId. The table contains at least
#' columns "area" and "timeId".
#'
#' @noRd
#'
.importInputTS <- function(area, timeStep, opts, fileNamePattern, colnames,
inputTimeStep, fun = "sum", type = "simple", colSelect = NULL, ...) {
path <- file.path(opts$inputPath, sprintf(fileNamePattern, area))
# if(!is.null(colSelect)){
# colnames <- colnames[colSelect]
# }
# If file does not exists or is empty, but we know the columns, then we
# create a table filled with 0. Else we return NULL
timeRange <- switch(inputTimeStep,
hourly=c(opts$timeIdMin, opts$timeIdMax),
daily=range(.getTimeId(opts$timeIdMin:opts$timeIdMax, "daily", opts)),
monthly=range(.getTimeId(opts$timeIdMin:opts$timeIdMax, "monthly", opts)))
if (opts$typeLoad == 'api' || (file.exists(path) && !file.size(path) == 0)) {
if(is.null(colSelect))
{
# inputTS <- fread(path, integer64 = "numeric", header = FALSE, showProgress = FALSE)
inputTS <- fread_antares(opts = opts, file = path, integer64 = "numeric", header = FALSE, showProgress = FALSE)
} else {
# inputTS <- fread(path, integer64 = "numeric", header = FALSE, select = colSelect, showProgress = FALSE)
inputTS <- fread_antares(opts = opts, file = path, integer64 = "numeric", header = FALSE, select = colSelect, showProgress = FALSE)
}
# browser()
if (opts$antaresVersion < 650) {
if(!is.null(inputTS)){
inputTS <- .reorderInputTSHydroStorage(inputTS, path, opts)
}
}
if(!is.null(inputTS)){
inputTS <- inputTS[timeRange[1]:timeRange[2]]
} else {
if (type == "matrix") return(NULL)
inputTS <- data.table(matrix(0L, timeRange[2] - timeRange[1] + 1,length(colnames)))
}
} else {
if (type == "matrix") return(NULL)
inputTS <- data.table(matrix(0L, timeRange[2] - timeRange[1] + 1,length(colnames)))
}
if(!is.null(inputTS)){
# Add area and timeId columns and put it at the begining of the table
inputTS$area <- area
inputTS$timeId <- timeRange[1]:timeRange[2]
.reorderCols(inputTS)
inputTS <- changeTimeStep(inputTS, timeStep, inputTimeStep, fun = fun, opts = opts)
# If the data is a matrix of time series melt the data
if (type == "matrix") {
colnames <- c("tsId", colnames)
inputTS <- melt(inputTS, id.vars = c("area", "timeId"))
inputTS$variable <- as.integer(substring(inputTS$variable, 2))
}
setnames(inputTS, names(inputTS), c("area", "timeId", colnames))
}
inputTS
}
.importLoad <- function(area, timeStep, opts, ...) {
.importInputTS(area, timeStep, opts, "load/series/load_%s.txt", "load",
inputTimeStep = "hourly", type = "matrix")
}
.importThermalAvailabilities <- function(area, timeStep, opts, ...) {
if (!area %in% opts$areasWithClusters) return(NULL)
if(!"api" %in% opts$typeLoad){
clusters <- list.files(file.path(opts$inputPath, "thermal/series", area))
} else {
clusters <- names(read_secure_json(file.path(opts$inputPath, "thermal/series", area),
token = opts$token, timeout = opts$timeout, config = opts$httr_config))
}
ldply(clusters, function(cl) {
filePattern <- sprintf("%s/%s/%%s/series.txt", "thermal/series", area)
res <- .importInputTS(cl, timeStep, opts, filePattern, "ThermalAvailabilities",
inputTimeStep = "hourly", type = "matrix")
if (is.null(res)) return(NULL)
res$area <- area
res$cluster <- cl
setcolorder(res, c("area", "cluster", "timeId", setdiff(names(res), c("area", "cluster", "timeId"))))
})
}
.importResProduction <- function(area, timeStep, opts, ...) {
if (!area %in% opts$areasWithResClusters) return(NULL)
if(!"api" %in% opts$typeLoad){
clusters <- list.files(file.path(opts$inputPath, "renewables/series", area))
} else {
clusters <- names(read_secure_json(file.path(opts$inputPath, "renewables/series", area),
token = opts$token, timeout = opts$timeout, config = opts$httr_config))
}
ldply(clusters, function(cl) {
filePattern <- sprintf("%s/%s/%%s/series.txt", "renewables/series", area)
res <- .importInputTS(cl, timeStep, opts, filePattern, "production",
inputTimeStep = "hourly", type = "matrix")
if (is.null(res)) return(NULL)
res$area <- area
res$cluster <- cl
setcolorder(res, c("area", "cluster", "timeId", setdiff(names(res), c("area", "cluster", "timeId"))))
})
}
.importROR <- function(area, timeStep, opts, ...) {
.importInputTS(area, timeStep, opts, "hydro/series/%s/ror.txt", "ror",
inputTimeStep = "hourly", type = "matrix")
}
# "mingen" (v860)
.importmingen <- function(area, timeStep, opts, ...){
.importInputTS(area, timeStep, opts, "hydro/series/%s/mingen.txt", "mingen",
inputTimeStep = "hourly", type = "matrix")
}
.importHydroStorageInput <- function(area, timeStep, opts, ...) {
inputTimeStepV <- ifelse(opts$antaresVersion >= 650, yes = "daily", no = "monthly")
.importInputTS(area, timeStep, opts, "hydro/series/%s/mod.txt", "hydroStorage",
inputTimeStep = inputTimeStepV, type = "matrix")
}
.importHydroStorageMaxPower <- function(area, timeStep, opts, unselect = NULL, ...) {
unselect = unselect$areas
if (opts$antaresVersion >= 650) {
beginName <- c("generatingMaxPower", "generatingMaxEnergy",
"pumpingMaxPower", "pumpingMaxEnergy")
} else {
beginName <- c("hstorPMaxLow", "hstorPMaxAvg", "hstorPMaxHigh")
}
if(!is.null(unselect)){
colSelect <- which(!beginName%in%unselect)
names <- beginName[colSelect]
}else{
colSelect <- NULL
names <- beginName
}
.importInputTS(area, timeStep, opts, "hydro/common/capacity/maxpower_%s.txt",
colnames=names,
inputTimeStep = "daily", fun = "mean", colSelect = colSelect)
}
.importWind <- function(area, timeStep, opts, ...) {
.importInputTS(area, timeStep, opts, "wind/series/wind_%s.txt", "wind",
inputTimeStep = "hourly", type = "matrix")
}
.importSolar <- function(area, timeStep, opts, ...) {
.importInputTS(area, timeStep, opts, "solar/series/solar_%s.txt", "solar",
inputTimeStep = "hourly", type = "matrix")
}
.importMisc <- function(area, timeStep, opts, colSelect = NULL, names = NULL, unselect = NULL, ...) {
unselect = unselect$areas
if(!is.null(unselect)){
colSelect <- which(!pkgEnv$miscNames%in%unselect)
names <- pkgEnv$miscNames[colSelect]
}else{
colSelect <- NULL
names <- pkgEnv$miscNames
}
if(is.null(names)){
names=pkgEnv$miscNames
}
.importInputTS(area, timeStep, opts, "misc-gen/miscgen-%s.txt",
colnames=names,
inputTimeStep = "hourly", colSelect = colSelect)
}
.importReserves <- function(area, timeStep, opts, colSelect = NULL, names = NULL, unselect =NULL, ...) {
beginName <- c("primaryRes", "strategicRes", "DSM", "dayAhead")
unselect = unselect$areas
if(!is.null(unselect)){
colSelect <- which(!beginName%in%unselect)
names <- beginName[colSelect]
}else{
colSelect <- NULL
names <- beginName
}
.importInputTS(area, timeStep, opts, "reserves/%s.txt",
colnames=names,
inputTimeStep = "hourly", colSelect = colSelect)
}
.importLinkCapacity <- function(link, timeStep, opts, unselect = NULL, ...) {
areas <- strsplit(link, " - ")[[1]]
unselect <- unselect$links
#TODO DEL after some antaresVersion, by example, del this check after Antares
#version 8 and check in readAntares the version
if (opts$antaresVersion >= 650) {
if (opts$antaresVersion >= 820) {
beginName <- c("hurdlesCostDirect", "hurdlesCostIndirect",
"impedances", "loopFlow", "p.ShiftMin", "p.ShiftMax")
fun = c("mean", "mean", "mean", "sum", "sum", "sum")
}else{
beginName <- c("transCapacityDirect", "transCapacityIndirect",
"hurdlesCostDirect", "hurdlesCostIndirect",
"impedances", "loopFlow", "p.ShiftMin", "p.ShiftMax")
fun = c("sum", "sum", "mean", "mean", "mean", "sum", "sum", "sum")
}
} else {
beginName <- c("transCapacityDirect", "transCapacityIndirect",
"impedances", "hurdlesCostDirect", "hurdlesCostIndirect")
fun = c("sum", "sum", "mean", "mean", "mean")
}
if(!is.null(unselect)){
colSelect <- which(!beginName%in%unselect)
names <- beginName[colSelect]
}else{
colSelect <- NULL
names <- beginName
}
if(opts$antaresVersion >= 820){
#For V>8.2 read transCapacityDirect in separated file, include MC
if(!link%in%opts$linkList)return(NULL)
###Read parameters file
res <- .importInputTS(areas[2], timeStep, opts,
sprintf("%s/%%s_parameters.txt", file.path("links", areas[1])),
colnames = names,
inputTimeStep = "hourly",
fun = fun, colSelect = colSelect)
###Read transCapacityDirect file
transCapacityDirect <- .importInputTS(areas[2], timeStep, opts,
sprintf("%s/capacities/%%s_direct.txt", file.path("links", areas[1])),
colnames = "transCapacityDirect",
inputTimeStep = "hourly", type = "matrix",
fun = "sum", colSelect = colSelect)
###Read transCapacityIndirect file
transCapacityIndirect <- .importInputTS(areas[2], timeStep, opts,
sprintf("%s/capacities/%%s_indirect.txt", file.path("links", areas[1])),
colnames = "transCapacityIndirect",
inputTimeStep = "hourly", type = "matrix",
fun = "sum", colSelect = colSelect)
res <- merge(transCapacityIndirect, res, by = c("area","timeId"))
res <- merge(transCapacityDirect, res, by = c("area","timeId", "tsId"))
res <- res[order(area, tsId, timeId)]
names <- c("tsId", "transCapacityDirect", "transCapacityIndirect", names)
}else{
# A bit hacky, but it works !
res <- .importInputTS(areas[2], timeStep, opts,
sprintf("%s/%%s.txt", file.path("links", areas[1])),
colnames = names,
inputTimeStep = "hourly",
fun = fun, colSelect = colSelect)
}
res$area <- NULL
res$link <- link
setcolorder(res, c("link", "timeId", names))
}
.importThermalData <- function(area, opts, timeStep, unselect = NULL, ...) {
if (!area %in% opts$areasWithClusters) return(NULL)
unselect <- unselect$areas
path <- file.path(opts$inputPath, "thermal/prepro", area)
if(!"api" %in% opts$typeLoad){
clusters <- list.files(path)
} else {
clusters <- names(read_secure_json(path, token = opts$token, timeout = opts$timeout, config = opts$httr_config))
}
beginName <- c("FODuration", "PODuration", "FORate", "PORate", "NPOMin", "NPOMax")
if(!is.null(unselect)){
colSelect <- which(!beginName%in%unselect)
names <- beginName[colSelect]
}else{
colSelect <- NULL
names <- beginName
}
res <- ldply(clusters, function(cl) {
if(is.null(colSelect))
{
# data <- fread(file.path(path, cl, "data.txt"), colClasses = "numeric")
data <- fread_antares(opts = opts, file = file.path(path, cl, "data.txt"), colClasses = "numeric")
}else{
# data <- fread(file.path(path, cl, "data.txt"), select = colSelect, colClasses = "numeric")
data <- fread_antares(opts = opts, file = file.path(path, cl, "data.txt"), select = colSelect, colClasses = "numeric")
}
setnames(data,
names(data), names)
data$area <- area
data$cluster <- cl
# index blocks
a <- opts$parameters$general$simulation.start
b <- opts$parameters$general$simulation.end
data <- data[a:b]
data$timeId <- a:b
changeTimeStep(data, timeStep, "daily", fun = "mean")
})
}
.importThermalModulation <- function(area, opts, timeStep, unselect = NULL, ...) {
if (!area %in% opts$areasWithClusters) return(NULL)
unselect <- unselect$areas
path <- file.path(opts$inputPath, "thermal/prepro", area)
if(!"api" %in% opts$typeLoad){
clusters <- list.files(path)
} else {
clusters <- names(read_secure_json(path, token = opts$token, timeout = opts$timeout, config = opts$httr_config))
}
beginName <- c("marginalCostModulation", "marketBidModulation",
"capacityModulation", "minGenModulation")
if(!is.null(unselect)){
colSelect <- which(!beginName%in%unselect)
names <- beginName[colSelect]
}else{
colSelect <- NULL
names <- beginName
}
res <- ldply(clusters, function(cl) {
if(is.null(colSelect))
{
# modulation <- fread(file.path(path, cl, "modulation.txt"), colClasses = "numeric")
modulation <- fread_antares(opts = opts, file = file.path(path, cl, "modulation.txt"), colClasses = "numeric")
}else{
# modulation <- fread(file.path(path, cl, "modulation.txt"), select = colSelect, colClasses = "numeric")
modulation <- fread_antares(opts = opts, file = file.path(path, cl, "modulation.txt"), select = colSelect, colClasses = "numeric")
}
setnames(modulation,
names(modulation), names)
if (all(modulation$minGenModulation == 0))
modulation[, minGenModulation := NA_real_]
modulation$area <- area
modulation$cluster <- cl
modulation <- modulation[opts$timeIdMin:opts$timeIdMax]
modulation$timeId <- opts$timeIdMin:opts$timeIdMax
changeTimeStep(modulation, timeStep, "hourly", fun = "mean")
})
}
# .changeNameInput <- function(path, opts){
# out <- sub(pattern = "studies", "file", path)
# out <- gsub(" ", "%20", out)
# }
# "st-storage" (v860)
.importSTStorage <- function(area, timeStep, opts, ...){
if (!area %in% opts$areasWithSTClusters)
return(NULL)
if(!"api" %in% opts$typeLoad){
clusters <- list.files(
file.path(opts$inputPath,
"st-storage/series",
area)
)
# "st-storage" have 5 txt files output for each cluster
list_names_txt_files <- unique(
list.files(
file.path(opts$inputPath,
"st-storage/series",
area,
clusters)
)
)
list_names_less_txt <- sub(pattern = ".txt",
replacement = "",
x = list_names_txt_files)
} else {
list_info_clusters <- read_secure_json(
file.path(opts$inputPath,
"st-storage/series",
area),
token = opts$token,
timeout = opts$timeout,
config = opts$httr_config
)
clusters <- names(list_info_clusters)
files_names <- names(list_info_clusters[[1]])
list_names_txt_files <- paste0(files_names, ".txt")
list_names_less_txt <- files_names
}
# read TS for every cluster
ldply(clusters, function(cl) {
pattern <- paste0("%s/%s/%%s/",
list_names_txt_files)
filePatterns <- sprintf(pattern,
"st-storage/series", area)
res <- lapply(filePatterns,
function(.x){
index_name_file <- which(filePatterns %in% .x)
res_temp <- .importInputTS(area= cl,
timeStep= timeStep,
opts= opts,
fileNamePattern= .x,
colnames= "st-storage",
inputTimeStep = "hourly",
type = "matrix")
res_temp$name_file <- list_names_less_txt[index_name_file]
res_temp
})
res <- rbindlist(res)
if (is.null(res))
return(NULL)
res$area <- area
res$cluster <- cl
setcolorder(res,
c("area",
"cluster",
"timeId",
setdiff(
names(res),
c("area",
"cluster",
"timeId")))
)
})
# added a column "name_file" to tag the file name
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.