Nothing
test_that("adjClust methods returns expected 'calls'", {
toto <- system.time({sim <- matrix(
c(1.0, 0.1, 0.2, 0.3,
0.1, 1.0 ,0.4 ,0.5,
0.2, 0.4, 1.0, 0.6,
0.3, 0.5, 0.6, 1.0), nrow = 4)
## similarity, full width
fit1 <- adjClust(sim, "similarity")
lst <- as.list(fit1$call)
expect_identical(lst[[1]], as.symbol("adjClust"))
## similarity, h < p-1
fit2 <- adjClust(sim, "similarity", h = 2)
lst <- as.list(fit2$call)
expect_identical(lst[[1]], as.symbol("adjClust"))
## dissimilarity
dist <- as.dist(sqrt(2-(2*sim)))
## dissimilarity, full width
fit3 <- adjClust(dist, "dissimilarity")
lst <- as.list(fit3$call)
expect_identical(lst[[1]], as.symbol("adjClust"))
## dissimilarity, h < p-1
fit4 <- adjClust(dist, "dissimilarity", h = 2)
lst <- as.list(fit4$call)
expect_identical(lst[[1]], as.symbol("adjClust"))})
})
test_that("adjClust methods properly catches unexpected 'calls'", {
mat <- matrix(NA_character_)
expect_error(adjClust(mat), "Input matrix is not numeric")
mat <- matrix(NA_real_)
expect_error(adjClust(mat), "Missing values in the input are not allowed")
mat <- matrix(1:2)
expect_error(adjClust(mat), "Input matrix is not symmetric")
mat <- matrix(rep(1, 4), 2, 2)
expect_error(adjClust(mat, h = NA_character_), "Input band width 'h' must be numeric")
expect_error(adjClust(mat, h = -1), "Input band width 'h' must be non negative")
expect_error(adjClust(mat, h = 0.1), "Input band width 'h' must be an integer")
expect_error(adjClust(mat, h = 2), "Input band width 'h' must be strictly less than dimensions of matrix")
adjClust(mat, strictCheck = FALSE)
# dsyMatrix/dgeMatrix
mat <- matrix(rep(1, 4), 2, 2)
smat <- as(as(as(mat, "dMatrix"), "symmetricMatrix"), "unpackedMatrix")
smat[1, 2] <- 2 # automatic coercion to dgeMatrix
expect_error(adjClust(smat), "Input matrix is not symmetric")
# dgTMatrix
mat <- matrix(rep(1, 4), 2, 2)
smat <- as(as(as(mat, "dMatrix"), "symmetricMatrix"), "sparseMatrix")
expect_error(adjClust(smat, type = "dissimilarity"),
"'type' can only be 'similarity' with sparse Matrix inputs")
dmat <- as(as(as(smat, "dMatrix"), "symmetricMatrix"), "TsparseMatrix")
expect_error(adjClust(dmat, type = "dissimilarity"),
"'type' can only be 'similarity' with sparse Matrix inputs")
dmat <- as(mat, "dgTMatrix")
dmat[1, 2] <- 0
expect_error(adjClust(dmat), "Input matrix is not symmetric")
})
test_that("'matL' and 'matR' are consistent with C++ versions", {
sim <- matrix(
c(1.0, 0.1, 0.2, 0.3,
0.1, 1.0 ,0.4 ,0.5,
0.2, 0.4, 1.0, 0.6,
0.3, 0.5, 0.6, 1.0), nrow = 4)
ml <- matL(sim, h = 2)
mr <- matR(sim, h = 2)
mat <- as(sim, "dgCMatrix")
expect_identical(matL_full(sim, h = 2), ml)
expect_identical(matL(mat, h = 2), ml)
expect_identical(matR_full(sim, h = 2), mr)
expect_identical(matR(mat, h = 2), mr)
expect_identical(matR_sparse(mat, h = 2),
as(mr, "sparseMatrix"))
expect_identical(matL_sparse(mat, h = 2),
as(ml, "sparseMatrix"))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.