Nothing
#' Merge taxa in groups (vectorized version)
#'
#' @description
#'
#' <a href="https://adrientaudiere.github.io/MiscMetabar/articles/Rules.html#lifecycle">
#' <img src="https://img.shields.io/badge/lifecycle-stable-green" alt="lifecycle-stable"></a>
#'
#' Firstly release in the [speedyseq](https://github.com/mikemc/speedyseq/) R
#' package by Michael R. McLaren.
#'
#' Merge taxa in `x` into a smaller set of taxa defined by the vector `group`.
#' Taxa whose value in `group` is NA will be dropped. New taxa will be named
#' according to the most abundant taxon in each group (`phyloseq` and
#' `otu_table` objects) or the first taxon in each group (all other phyloseq
#' component objects).
#'
#' If `x` is a phyloseq object with a phylogenetic tree, then the new taxa will
#' be ordered as they are in the tree. Otherwise, the taxa order can be
#' controlled by the `reorder` argument, which behaves like the `reorder`
#' argument in [base::rowsum()]. `reorder = FALSE` will keep taxa in
#' the original order determined by when the member of each group first appears
#' in `taxa_names(x)`; `reorder = TRUE` will order new taxa according to their
#' corresponding value in `group`.
#'
#' The `tax_adjust` argument controls the handling of taxonomic disagreements
#' within groups. Setting `tax_adjust == 0` causes no adjustment; the taxonomy
#' of the new group is set to the archetype taxon (see below). Otherwise,
#' disagreements within a group at a given rank cause the values at lower ranks
#' to be set to `NA`. If `tax_adjust == 1` (the default), then a rank where all
#' taxa in the group are already NA is not counted as a disagreement, and lower
#' ranks may be kept if the taxa agree. This corresponds to the original
#' phyloseq behavior. If `tax_adjust == 2`, then these NAs are treated as a
#' disagreement; all ranks are set to NA after the first disagreement or NA.
#'
#' @param x A phyloseq object or component object
#' @param group A vector with one element for each taxon in `physeq` that
#' defines the new groups. see `base::rowsum()`.
#' @param reorder Logical specifying whether to reorder the taxa by their
#' `group` values. Ignored if `x` has (or is) a phylogenetic tree.
#' @param tax_adjust 0: no adjustment; 1: phyloseq-compatible adjustment; 2:
#' conservative adjustment
#' @export
#' @return A new phyloseq-class, otu_table, tax_table, XStringset or
#' sam_data object depending on the class of the x param
#' @seealso
#' Function in MiscMetabar that use this function: [postcluster_pq()]
#'
#' [base::rowsum()]
#'
#' [phyloseq::merge_taxa()]
#'
#' @author Michael R. McLaren (orcid: [0000-0003-1575-473X](https://orcid.org/0000-0003-1575-473X)) modified by Adrien Taudiere
setGeneric(
"merge_taxa_vec",
function(x,
group,
reorder = FALSE,
tax_adjust = 1L) {
standardGeneric("merge_taxa_vec")
}
)
#' @rdname merge_taxa_vec
setMethod(
"merge_taxa_vec", "phyloseq",
function(x, group, reorder = FALSE, tax_adjust = 1L) {
stopifnot(ntaxa(x) == length(group))
stopifnot(tax_adjust %in% c(0L, 1L, 2L))
# Warn the user if an impossible reordering is requested
if (!is.null(x@phy_tree) & reorder) {
warning("Can't reorder taxa if `x` has a `phy_tree`")
reorder <- FALSE
}
# drop taxa with `is.na(group)`
if (anyNA(group)) {
warning("`group` has missing values; corresponding taxa will be dropped")
x <- prune_taxa(!is.na(group), x)
group <- group[!is.na(group)]
}
# Get the merged otu_table with new taxa named by most abundant
otu <- merge_taxa_vec(otu_table(x), group, reorder = reorder)
# Adjust taxonomy if necessary
if (!is.null(x@tax_table) & tax_adjust != 0) {
tax <- merge_taxa_vec(tax_table(x), group,
tax_adjust = tax_adjust,
reorder = reorder
)
# Taxa in `tax` are in same order as in `otu` but are named by first in
# group instead of max and so need to be renamed
taxa_names(tax) <- taxa_names(otu)
} else {
tax <- NULL
}
# Create the new phyloseq object. Replacing the original otu_table with
# the new, smaller table will automatically prune the taxonomy, tree, and
# refseq to the smaller set of archetypal taxa.
otu_table(x) <- otu
if (!is.null(tax)) {
tax_table(x) <- tax
}
return(x)
}
)
#' @rdname merge_taxa_vec
setMethod(
"merge_taxa_vec", "otu_table",
function(x, group, reorder = FALSE) {
stopifnot(ntaxa(x) == length(group))
# Work with taxa as rows, and remember to flip back at end if needed
needs_flip <- !taxa_are_rows(x)
if (needs_flip) {
x <- t(x)
}
# Drop taxa with `is.na(group)`
if (anyNA(group)) {
warning("`group` has missing values; corresponding taxa will be dropped")
x <- x[!is.na(group), ]
group <- group[!is.na(group)]
}
# New taxa names are the most abundant taxon in each group; in the case of
# ties, the first taxon is chosen. Original group order is maintained.
new_names <- tibble(
taxon = taxa_names(x),
sum = taxa_sums(x),
group = factor(group, levels = unique(group))
) %>%
group_by(group) %>%
mutate(archetype = taxon[which.max(sum)]) %>%
group_by(group) %>%
dplyr::slice_head()
if (reorder) {
new_names <- new_names %>% arrange(archetype)
}
# Compute new table with base::rowsum(). The call to rowsum() makes the
# rownames the group names.
otu <- otu_table(rowsum(x, group, reorder = reorder), taxa_are_rows = TRUE)
stopifnot(all.equal(as.character(new_names$group), taxa_names(otu)))
taxa_names(otu) <- new_names$archetype
if (needs_flip) {
otu <- t(otu)
}
return(otu)
}
)
#' @rdname merge_taxa_vec
setMethod(
"merge_taxa_vec", "taxonomyTable",
function(x, group, reorder = FALSE, tax_adjust = 1L) {
stopifnot(ntaxa(x) == length(group))
# Temporary stopgap to avoid hidden errors if internal variable names are
# in the tax table
if (any(c(".taxon", ".group") %in% rank_names(x))) {
stop("Currently requires that '.taxon' and '.group' are not in `rank_names(x)`")
}
# drop taxa with `is.na(group)`
if (anyNA(group)) {
warning("`group` has missing values; corresponding taxa will be dropped")
x <- x[!is.na(group), ]
group <- group[!is.na(group)]
}
if (tax_adjust == 0L) {
return(merge_taxa_vec_pseudo(x, group, reorder = reorder))
} else if (tax_adjust == 1L) {
na_bad <- FALSE
} else if (tax_adjust == 2L) {
na_bad <- TRUE
}
k <- length(rank_names(x))
# bad_string is used to temporarily mark bad values in the tax table
bad_string <- paste0("BAD", Sys.time())
# Reduce each group to one row; sort if needed; then finish flushing bad
# ranks and making new tax table
reduced <- x %>%
as("matrix") %>%
as_tibble()
reduced[, ".taxon"] <- taxa_names(x)
reduced[, ".group"] <- factor(group, levels = unique(group))
reduced_by_group <- as_tibble(apply(
reduced, 2, function(xx) {
unlist(tapply(xx, reduced$.group, bad_or_unique,
bad = bad_string, simplify = FALSE
))
}
))
reduced_by_group[, ".taxon"] <-
tapply(reduced$.taxon, reduced$.group, function(xx) {
xx[[1]]
})
if (reorder) {
reduced_by_group <- reduced_by_group %>%
arrange(.group)
}
reduced_by_group <- reduced_by_group %>%
select(-.group) %>%
tibble::column_to_rownames(".taxon")
# If only one tax rank, just convert bad_string -> NA; else, need to
# propagate bad ranks downwards and convert to NAs
if (identical(length(rank_names(x)), 1L)) {
reduced[[1]] <- reduced[[1]] %>%
{
ifelse(. == bad_string, NA_character_, .)
}
reduced %>%
as("matrix") %>%
tax_table()
} else {
reduced %>%
apply(1, bad_flush_right, bad = bad_string, na_bad = na_bad, k = k) %>%
t() %>%
tax_table()
}
}
)
#' @rdname merge_taxa_vec
setMethod(
"merge_taxa_vec", "phylo",
function(x, group) {
merge_taxa_vec_pseudo(x, group)
}
)
#' @rdname merge_taxa_vec
setMethod(
"merge_taxa_vec", "XStringSet",
function(x, group, reorder = FALSE) {
merge_taxa_vec_pseudo(x, group, reorder = reorder)
}
)
#' Pseudo-merge taxa in groups
#'
#' Returns `x` pruned to the first taxon of each group defined in `group`.
#'
#' @param x a phyloseq component-class object
#' @param group a vector with one element for each taxon in `x` that defines
#' the new groups
#' @keywords internal
#' @noRd
merge_taxa_vec_pseudo <- function(x, group, reorder = FALSE) {
stopifnot(ntaxa(x) == length(group))
# drop taxa with `is.na(group)`
if (anyNA(group)) {
warning("`group` has missing values; corresponding taxa will be dropped")
x <- prune_taxa(!is.na(group), x)
group <- group[!is.na(group)]
}
# Archetypes are the first taxon in each group
archetypes <- tibble(
taxon = taxa_names(x),
group = factor(group, levels = unique(group))
) %>%
group_by(group) %>%
mutate(archetype = taxon[1])
if (reorder) {
archetypes %>% arrange(group)
}
select_taxa(x, archetypes$taxon, reorder = TRUE)
}
# helper functions ------------------------------------------------------------
#' Reduce a vector x to its unique value or the value of `bad`
#'
#' Helper for `merge_taxa_vec()`
#'
#' @param x a vector
#' @param bad the string representing a bad value
#' @keywords internal
#' @noRd
#' @author Michael R. McLaren (orcid: [0000-0003-1575-473X](https://orcid.org/0000-0003-1575-473X))
bad_or_unique <- function(x, bad = "BAD") {
if (length(unique(x)) == 1) {
x[[1]]
} else {
bad
}
}
#' Replace all values with NA upon seeing a bad value
#'
#' Helper for `merge_taxa_vec()`
#'
#' @param x a vector
#' @param bad the string representing a bad value
#' @param na_bad whether NAs should also be treated as bad
#' @param k the index to which values are flushed
#' @keywords internal
#' @noRd
#' @author Michael R. McLaren (orcid: [0000-0003-1575-473X](https://orcid.org/0000-0003-1575-473X))
bad_flush_right <- function(x, bad = "BAD", na_bad = FALSE, k = length(x)) {
if (na_bad) {
which_bad <- which(x == bad | is.na(x))
} else {
which_bad <- which(x == bad)
}
if (length(which_bad) > 0) {
x[seq(min(which_bad), k)] <- NA
}
return(x)
}
#' Merge samples by a sample variable or factor
#' @description
#'
#' <a href="https://adrientaudiere.github.io/MiscMetabar/articles/Rules.html#lifecycle">
#' <img src="https://img.shields.io/badge/lifecycle-stable-green" alt="lifecycle-stable"></a>
#'
#' Firstly release in the [speedyseq](https://github.com/mikemc/speedyseq/) R
#' package by Michael R. McLaren.
#'
#' This function provides an alternative to `phyloseq::merge_samples()` that
#' better handles sample variables of different types, especially categorical
#' sample variables. It combines the samples in `x` defined by the sample
#' variable or factor `group` by summing the abundances in `otu_table(x)` and
#' combines sample variables by the summary functions in `funs`. The default
#' summary function, `unique_or_na()`, collapses the values within a group to a
#' single unique value if it exists and otherwise returns NA. The new (merged)
#' samples are named by the values in `group`.
#'
#' @param x A `phyloseq`, `otu_table`, or `sample_data` object
#' @param group A sample variable or a vector of length `nsamples(x)` defining
#' the sample grouping. A vector must be supplied if x is an otu_table
#' @param fun_otu Function for combining abundances in the otu_table; default
#' is `sum`. Can be a formula to be converted to a function by
#' [purrr::as_mapper()]
#' @param funs Named list of merge functions for sample variables; default is
#' `unique_or_na`
#' @param reorder Logical specifying whether to reorder the new (merged)
#' samples by name
#' @param default_fun Default functions if funs is not set. Per default
#' the function unique_or_na is used. See `diff_fct_diff_class()` for
#' a useful alternative.
#' @export
#' @return A new phyloseq-class, otu_table or sam_data object depending on
#' the class of the x param
#' @examples
#' data(enterotype)
#'
#' # Merge samples with the same project and clinical status
#' ps <- enterotype
#' sample_data(ps) <- sample_data(ps) %>%
#' transform(Project.ClinicalStatus = Project:ClinicalStatus)
#' sample_data(ps) %>% head()
#' ps0 <- merge_samples2(ps, "Project.ClinicalStatus",
#' fun_otu = mean,
#' funs = list(Age = mean)
#' )
#' sample_data(ps0) %>% head()
#' @author Michael R. McLaren (orcid: [0000-0003-1575-473X](https://orcid.org/0000-0003-1575-473X)) modified by Adrien Taudiere
setGeneric(
"merge_samples2",
function(x,
group,
fun_otu = sum,
funs = list(),
reorder = FALSE,
default_fun = unique_or_na) {
standardGeneric("merge_samples2")
}
)
#' @rdname merge_samples2
setMethod(
"merge_samples2",
signature("phyloseq"),
function(x, group, fun_otu = sum, funs = list(), reorder = FALSE,
default_fun = unique_or_na) {
if (length(group) == 1) {
stopifnot(group %in% sample_variables(x))
group <- sample_data(x)[[group]]
} else {
stopifnot(identical(length(group), nsamples(x)))
}
# Drop samples with `is.na(group)`
if (anyNA(group)) {
warning("`group` has missing values; corresponding samples will be dropped")
x <- prune_samples(!is.na(group), x)
group <- group[!is.na(group)]
}
# Merge
otu.merged <- merge_samples2(otu_table(x), group,
fun_otu = fun_otu,
reorder = reorder
)
if (!is.null(access(x, "sam_data"))) {
sam.merged <- merge_samples2(sample_data(x), group, funs = funs, default_fun = default_fun)
} else {
sam.merged <- NULL
}
phyloseq(
otu.merged,
sam.merged,
access(x, "tax_table"),
access(x, "phy_tree"),
access(x, "refseq")
)
}
)
#' @rdname merge_samples2
setMethod(
"merge_samples2",
signature("otu_table"),
function(x, group, fun_otu = sum, reorder = FALSE,
default_fun = unique_or_na) {
stopifnot(identical(length(group), nsamples(x)))
# Work with samples as rows, and remember to flip back at end if needed
needs_flip <- taxa_are_rows(x)
if (needs_flip) {
x <- t(x)
}
# Drop samples with `is.na(group)`
if (anyNA(group)) {
warning("`group` has missing values; corresponding samples will be dropped")
x <- x[!is.na(group), ]
group <- group[!is.na(group)]
}
# Merging; result is a matrix with taxa as columns and rownames
# corresponding to `group`
if (identical(fun_otu, sum)) {
x.merged <- rowsum(x, group, reorder = reorder)
} else {
stopifnot(!".group" %in% colnames(x))
x.merged <- x %>%
as("matrix") %>%
tibble::as_tibble() %>%
cbind(.group = group) %>%
group_by(.group) %>%
summarise(across(everything(), purrr::as_mapper(fun_otu)))
if (reorder) {
x.merged <- x.merged %>% arrange(.group)
}
x.merged <- x.merged %>%
tibble::column_to_rownames(".group")
}
# Return an otu_table in the proper orientation
x.merged <- x.merged %>% otu_table(taxa_are_rows = FALSE)
if (needs_flip) {
x.merged <- t(x.merged)
}
return(x.merged)
}
)
#' @rdname merge_samples2
setMethod(
"merge_samples2",
signature("sample_data"),
function(x, group, funs = list(), reorder = FALSE,
default_fun = unique_or_na) {
if (length(group) == 1) {
stopifnot(group %in% sample_variables(x))
group <- x[[group]]
} else {
stopifnot(identical(length(group), nsamples(x)))
}
# Drop samples with `is.na(group)`
if (anyNA(group)) {
warning("`group` has missing values; corresponding samples will be dropped")
x <- x[!is.na(group), ]
group <- group[!is.na(group)]
}
## Set the functions f used to merge each sample variable.
# Named logical vector indicating whether each variable is in the funs
var_in_funs <- names(x) %>%
rlang::set_names(. %in% names(funs), .)
# For vars in the funs, run f through as_mapper; else, use the default f
funs <- purrr::map2(
var_in_funs, names(var_in_funs),
~ if (.x) purrr::as_mapper(funs[[.y]]) else default_fun
)
## Merge variable values, creating a new sample_data object with one row
## per group.
# A "sample_data" object is a list of data variables (columns); strategy is
# to reduce each variable with `merge_groups()`, and then recombine into a
# data.frame. The call to `merge_groups()` will sort by `group` values,
# which we need to account for when setting the new sample names.
new_sample_names <- group %>%
unique() %>%
sort() %>%
as.character()
x.merged <- purrr::map2(
x, funs,
~ merge_groups(.x, group = group, f = .y)
) %>%
data.frame() %>%
vctrs::vec_set_names(new_sample_names)
## Put back in initial order
if (!reorder) {
initial_order <- group %>%
unique() %>%
as.character()
x.merged <- x.merged[initial_order, , drop = FALSE]
}
## Return as sample data with group names preserved
x.merged %>% MiscMetabar:::sample_data_stable()
}
)
# Helpers ---------------------------------------------------------------------
#' Get the unique value in x or NA if none
#'
#' If `unique(x)` is a single value, return it; otherwise, return an NA of the
#' same type as `x`. If `x` is a factor, then the levels and ordered status
#' will be kept in either case. If `x` is a non-atomic vector (i.e. a list),
#' then the logical `NA` will be used.
#'
#' @param x A vector
#' @export
#' @return Either a single value (if `unique(x)` return a single value) or a NA
#' @author Michael R. McLaren (orcid: [0000-0003-1575-473X](https://orcid.org/0000-0003-1575-473X))
#' @examples
#' f <- factor(c("a", "a", "b", "c"), ordered = TRUE)
#' unique_or_na(f)
#' unique_or_na(f[1:2])
#'
#' x <- c("a", "b", "a")
#' unique_or_na(x[c(1, 3)])
#' unique_or_na(x)
#' unique_or_na(x) %>% typeof()
unique_or_na <- function(x) {
UseMethod("unique_or_na")
}
#' @export
unique_or_na.default <- function(x) {
if (length(unique(x)) == 1) {
x[[1]]
} else if (is.atomic(x)) {
as(NA, typeof(x))
} else {
NA
}
}
#' @export
unique_or_na.factor <- function(x) {
if (length(unique(x)) == 1) {
x[[1]]
} else {
factor(NA, levels = levels(x), ordered = is.ordered(x))
}
}
#' Merge groups of elements within a vector by a function
#'
#' Internal function used in `merge_samples2()` to merge variables. Note, owing
#' to the use of `split()`, the merged elements in the new vector will be
#' reordered according to `group`.
#'
#' @param x A vector whose elements will be merged.
#' @param group A vector such that `as.factor(group)` defines the grouping.
#' @param f A function that, when applied to a subvector of x, returns a single
#' value. Can also be a formula as interpretted by `purrr::as_mapper()`.
#'
#' @keywords internal
#' @noRd
#' @author Michael R. McLaren (orcid: [0000-0003-1575-473X](https://orcid.org/0000-0003-1575-473X))
merge_groups <- function(x, group, f = unique_or_na) {
f <- purrr::as_mapper(f)
split(x, group) %>%
purrr::map(f) %>%
{
vctrs::vec_c(!!!., .name_spec = rlang::zap())
}
}
#' Create sample data without adjusting row/sample names
#'
#' `phyloseq::sample_data()` will change the sample names from the row names if
#' they are `as.character(seq(1, row(object)))`. This function instead keeps the
#' names as is.
#'
#' @param object A "data.frame"-class object
#'
#' @keywords internal
#' @noRd
#'
#' @author Michael R. McLaren (orcid: [0000-0003-1575-473X](https://orcid.org/0000-0003-1575-473X))
sample_data_stable <- function(object) {
# Modified from phyloseq's sample_data data.frame method; see
# https://github.com/joey711/phyloseq/blob/master/R/sampleData-class.R
stopifnot(identical(class(object), "data.frame"))
# Make sure there are no phantom levels in categorical variables
object <- droplevels(as(object, "data.frame"))
# instantiate first to check validity
SM <- new("sample_data", object)
return(SM)
}
#' Select a subset of taxa in a specified order where possible
#'
#' Select (a subset of) taxa; if `x` allows taxa to be reordered, then taxa are
#' given in the specified order.
#'
#' This is a simple selector function that is like `prune_taxa(taxa, x)` when
#' `taxa` is a character vector but always gives the taxa in the order `taxa`
#' if possible (that is, except for phy_tree's and phyloseq objects that
#' contain phy_tree's).
#'
#' @param x A phyloseq object or phyloseq component object
#' @param taxa Character vector of taxa to select, in requested order
#' @param reorder Logical specifying whether to use the order in `taxa` (TRUE)
#' or keep the order in `taxa_names(x)` (FALSE)
#' @author Michael R. McLaren (orcid: [0000-0003-1575-473X](https://orcid.org/0000-0003-1575-473X))
#' @rdname select_taxa-methods
setGeneric(
"select_taxa",
function(x, taxa, reorder = TRUE) standardGeneric("select_taxa")
)
#' @rdname select_taxa-methods
setMethod(
"select_taxa", signature("sample_data", "character"),
function(x, taxa) {
stopifnot(!anyDuplicated(taxa))
x
}
)
#' @rdname select_taxa-methods
setMethod(
"select_taxa", signature("otu_table", "character"),
function(x, taxa, reorder = TRUE) {
stopifnot(!anyDuplicated(taxa))
stopifnot(all(taxa %in% taxa_names(x)))
if (!reorder) {
taxa <- intersect(taxa_names(x), taxa)
}
if (taxa_are_rows(x)) {
x[taxa, , drop = FALSE]
} else {
x[, taxa, drop = FALSE]
}
}
)
#' @rdname select_taxa-methods
setMethod(
"select_taxa", signature("taxonomyTable", "character"),
function(x, taxa, reorder = TRUE) {
stopifnot(!anyDuplicated(taxa))
stopifnot(all(taxa %in% taxa_names(x)))
if (!reorder) {
taxa <- intersect(taxa_names(x), taxa)
}
x[taxa, , drop = FALSE]
}
)
#' @rdname select_taxa-methods
setMethod(
"select_taxa", signature("XStringSet", "character"),
function(x, taxa, reorder = TRUE) {
stopifnot(!anyDuplicated(taxa))
stopifnot(all(taxa %in% taxa_names(x)))
if (!reorder) {
taxa <- intersect(taxa_names(x), taxa)
}
x[taxa]
}
)
#' @rdname select_taxa-methods
setMethod(
"select_taxa", signature("phylo", "character"),
function(x, taxa) {
# NOTE: `reorder` argument silently ignored if supplied
stopifnot(!anyDuplicated(taxa))
stopifnot(all(taxa %in% taxa_names(x)))
ape::keep.tip(x, taxa)
}
)
#' @rdname select_taxa-methods
setMethod(
"select_taxa", signature("phyloseq", "character"),
function(x, taxa, reorder = TRUE) {
stopifnot(!anyDuplicated(taxa))
stopifnot(all(taxa %in% taxa_names(x)))
if (!reorder) {
taxa <- intersect(taxa_names(x), taxa)
}
otu_table(x) <- select_taxa(otu_table(x), taxa)
tax_order <- taxa_names(otu_table(x))
if (!is.null(tax_table(x, FALSE))) {
# If there is a taxonomyTable, re-order that too.
x@tax_table <- tax_table(x)[tax_order, ]
}
if (!is.null(refseq(x, FALSE))) {
# If there is a XStringSet, re-order that too.
x@refseq <- refseq(x)[tax_order]
}
}
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.