Nothing
suppressWarnings( RNGversion("3.5.3") )
set.seed(932451)
#################################################################
# load the data set
library(ClassDiscovery)
require(oompaData) # for the prostate cancer data set with 2000 genes
data(expression.data)
data(clinical.info)
# make sure the Status variable has "N"ormals as the first level
# Note that "T" = primary prostate tumor and "L" = lymph node metastasis
temp <- ordered(clinical.info$Status, c('N', 'T', 'L'))
clinical.info$Status <- temp
rm(temp)
#################################################################
# create an exprSet
suppressMessages( require(Biobase) )
# create a phenoData object and an exprSet
vl <- data.frame(labelDescription=dimnames(clinical.info)[[2]])
rownames(vl) <- as.character(vl[,1])
pheno <- new('AnnotatedDataFrame',
data=clinical.info,
varMetadata=vl)
es <- new('ExpressionSet',
phenoData=pheno,
exprs=as.matrix(expression.data))
# we don't need the original data now that it has been
# incorporated into the exprSet
rm(expression.data)
rm(vl, pheno)
#################################################################
# Now we can start exercising the ClassDiscovery package
##################################
#windows(width=14, height=7, pointsize=10)
par(mfrow=c(2,2))
cluster3(es)
par(mfrow=c(1,1))
##################################
spc <- SamplePCA(es, 'Status')
levels(spc@splitter)
colorScheme <- c('green', 'magenta', 'red')
plot(spc, col=colorScheme)
legend(-25, -25, levels(spc@splitter), pch=15, col=colorScheme)
##################################
metric <- 'pearson'
linkage <- 'complete'
hc <- hclust(distanceMatrix(exprs(es), metric), linkage)
plotColoredClusters(hc, labs=colnames(exprs(es)),
col=colorScheme[as.numeric(spc@splitter)])
##################################
if (FALSE) { # don't run; this is slow
bc <- BootstrapClusterTest(es, cutHclust, k = 12, nTimes=200, verbose=FALSE,
metric=metric, method=linkage)
summary(bc)
hist(bc)
image(bc, dendrogram=hc, col=blueyellow(64))
}
##################################
if (FALSE) { # don't run; this is slow
pc <- PerturbationClusterTest(es, cutHclust, k = 10, nTimes=100, verbose=FALSE,
noise=1, metric=metric, method=linkage)
summary(pc)
hist(pc)
image(pc, dendrogram=hc, col=blueyellow(64))
}
##################################
# mosaic
mos <- Mosaic(es,center=TRUE, usecor=TRUE, geneMetric='pearson')
dimnames(pData(es))[[2]]
plot(mos, sampleClasses=pData(es)[,'Status'], sampleColors=colorScheme,
col=blueyellow(64), limits=c(-1,1), geneClasses=8)
if (FALSE) { # don't really need more heatmaps
plot(mos, sampleClasses=pData(es)[,'ChipType'], sampleColors=colorScheme,
col=blueyellow(64), limits=c(-1,1), geneClasses=8)
plot(mos, sampleClasses=pData(es)[,'Subgroups'], sampleColors=colorScheme,
col=blueyellow(64), limits=c(-1,1), geneClasses=8)
}
##################################
# clean everything up
rm(es, spc, colorScheme, hc, mos)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.