Nothing
#' Sort variance partition statistics
#'
#' Sort columns returned by \code{extractVarPart()} or \code{fitExtractVarPartModel()}
#'
#' @param x object returned by \code{extractVarPart()} or \code{fitExtractVarPartModel()}
#' @param FUN function giving summary statistic to sort by. Defaults to median
#' @param decreasing logical. Should the sorting be increasing or decreasing?
#' @param last columns to be placed on the right, regardless of values in these columns
#' @param ... other arguments to sort
#'
#' @return
#' data.frame with columns sorted by mean value, with Residuals in last column
#'
#' @examples
#' # library(variancePartition)
#'
#' # Intialize parallel backend with 4 cores
#' library(BiocParallel)
#' register(SnowParam(4))
#'
#' # load simulated data:
#' # geneExpr: matrix of gene expression values
#' # info: information/metadata about each sample
#' data(varPartData)
#'
#' # Specify variables to consider
#' # Age is continuous so we model it as a fixed effect
#' # Individual and Tissue are both categorical, so we model them as random effects
#' form <- ~ Age + (1|Individual) + (1|Tissue)
#'
#' # Step 1: fit linear mixed model on gene expression
#' # If categorical variables are specified, a linear mixed model is used
#' # If all variables are modeled as continuous, a linear model is used
#' # each entry in results is a regression model fit on a single gene
#' # Step 2: extract variance fractions from each model fit
#' # for each gene, returns fraction of variation attributable to each variable
#' # Interpretation: the variance explained by each variable
#' # after correction for all other variables
#' varPart <- fitExtractVarPartModel( geneExpr, form, info )
#'
#' # violin plot of contribution of each variable to total variance
#' # sort columns by median value
#' plotVarPart( sortCols( varPart ) )
#'
#' @export
#' @docType methods
#' @rdname sortCols-method
setGeneric("sortCols", signature="x",
function( x, FUN=median, decreasing = TRUE, last=c("Residuals", "Measurement.error"), ... )
standardGeneric("sortCols")
)
#' @export
#' @rdname sortCols-method
#' @aliases sortCols,matrix-method
setMethod("sortCols", "matrix",
function( x, FUN=median, decreasing = TRUE, last=c("Residuals", "Measurement.error"), ... ){
.sortCols(x, FUN, decreasing, last, ... )
}
)
#' @export
#' @rdname sortCols-method
#' @aliases sortCols,data.frame-method
setMethod("sortCols", "data.frame",
function( x, FUN=median, decreasing = TRUE, last=c("Residuals", "Measurement.error"), ... ){
.sortCols(x, FUN, decreasing, last, ... )
}
)
#' @export
#' @rdname sortCols-method
#' @aliases sortCols,varPartResults-method
setMethod("sortCols", "varPartResults",
function( x, FUN=median, decreasing = TRUE, last=c("Residuals", "Measurement.error"), ... ){
# df = suppressWarnings(as.data.frame(x, check.names=FALSE))
df = as.data.frame( x@.Data )
colnames(df) = names(x)
rownames(df) = x@row.names
res = .sortCols( df, FUN, decreasing, last, ... )
# res = as.data.frame( res )
vp = new( "varPartResults", res, type=x@type, method=x@method)
return( vp )
}
)
# internal driver function
.sortCols = function( x, FUN=median, decreasing = TRUE, last=c("Residuals", "Measurement.error"), ... ){
# sort by column mean
i = order(apply(x, 2, FUN), decreasing=decreasing)
# apply sorting
x = x[,i,drop=FALSE]
# find column with Residuals
idx = match(last, colnames(x) )
if( any(!is.na(idx)) ){
i = idx[!is.na(idx)]
res = cbind(x[,-i,drop=FALSE], x[,i,drop=FALSE])
}else{
res = x[,,drop=FALSE]
}
return( res)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.