Nothing
# Gabriel Hoffman
#
# October 13, 2020
# Simplify calculations of variance fractions and
# add compatability with glm's
#' Compute variance statistics
#'
#' Compute fraction of variation attributable to each variable in regression model. Also interpretable as the intra-class correlation after correcting for all other variables in the model.
#'
#' @param fit model fit from lm() or lmer()
#' @param showWarnings show warnings about model fit (default TRUE)
#' @param ... additional arguments (not currently used)
#'
#' @return
#' fraction of variance explained / ICC for each variable in the linear model
#'
#' @description
#' For linear model, variance fractions are computed based on the sum of squares explained by each component. For the linear mixed mode, the variance fractions are computed by variance component estimates for random effects and sum of squares for fixed effects.
#'
#' For a generalized linear model, the variance fraction also includes the contribution of the link function so that fractions are reported on the linear (i.e. link) scale rather than the observed (i.e. response) scale. For linear regression with an identity link, fractions are the same on both scales. But for logit or probit links, the fractions are not well defined on the observed scale due to the transformation imposed by the link function.
#'
#' The variance implied by the link function is the variance of the corresponding distribution:
#' logit -> logistic distribution -> variance is pi^2/3
#' probit -> standard normal distribution -> variance is 1
#'
#' Reviewed by
#' Nakagawa and Schielzeth. 2012. A general and simple method for obtaining R2 from generalized linear mixed-effects models. https://doi.org/10.1111/j.2041-210x.2012.00261.x
#'
#' Proposed by
#' McKelvey and Zavoina. A statistical model for the analysis of ordinal level dependent variables. The Journal of Mathematical Sociology 4(1) 103-120 https://doi.org/10.1080/0022250X.1975.9989847
#'
#' Also see
#' DeMaris. Explained Variance in Logistic Regression: A Monte Carlo Study of Proposed Measures. Sociological Methods & Research 2002 https://doi.org/10.1177/0049124102031001002
#'
#' We note that Nagelkerke's pseudo R^2 evaluates the variance explained by the full model. Instead, a variance partitioning approach evaluates the variance explained by each term in the model, so that the sum of each systematic plus random term sums to 1 (Hoffman and Schadt, 2016, Nakagawa and Schielzeth, 2012).
#'
#' @examples
#' library(lme4)
#' data(varPartData)
#'
#' # Linear mixed model
#' fit <- lmer( geneExpr[1,] ~ (1|Tissue) + Age, info)
#' calcVarPart( fit )
#'
#' # Linear model
#' # Note that the two models produce slightly different results
#' # This is expected: they are different statistical estimates
#' # of the same underlying value
#' fit <- lm( geneExpr[1,] ~ Tissue + Age, info)
#' calcVarPart( fit )
#'
#' @export
#' @docType methods
#' @rdname calcVarPart-method
setGeneric("calcVarPart", signature="fit",
function(fit, showWarnings=TRUE, ...)
standardGeneric("calcVarPart")
)
#' @export
#' @rdname calcVarPart-method
#' @aliases calcVarPart,lm-method
setMethod("calcVarPart", "lm",
function(fit, showWarnings=TRUE, ...){
# check validity of model fit
checkModelStatus( fit, showWarnings, ...)
an = anova(fit)
varFrac = an[['Sum Sq']] / sum( an[['Sum Sq']] )
names(varFrac) = rownames(an)
varFrac
})
#' @export
#' @rdname calcVarPart-method
#' @aliases calcVarPart,lmerMod-method
setMethod("calcVarPart", "lmerMod",
function(fit, showWarnings=TRUE,...){
# check validity of model fit
checkModelStatus( fit, showWarnings, ...)
# extract variance components
vc = unlist(getVarianceComponents(fit))
# create fractions
varFrac = vc / sum(vc)
# remove ".(Intercept)" string
names(varFrac) = gsub("\\.\\(Intercept\\)", "", names(varFrac))
varFrac
})
#' @export
#' @rdname calcVarPart-method
#' @aliases calcVarPart,glm-method
setMethod("calcVarPart", "glm",
function(fit, showWarnings=TRUE, ...){
N = nrow(fit$model)
# Compute eta for each term
# predicted value in linear space for each term
Eta = predict(fit, type="terms")
# compute residual term for each link
distVar = switch( fit$family$link ,
"logit" = (pi^2)/3,
"probit" = 1,
"identity" = var(fit$residuals) )
if( is.null(distVar) ){
stop("glm link not supported: ", fit$family$link )
}
# variance on linear scale
# get variance of each term
# append with variance due to link function
var_term = c(apply(Eta, 2, var), distVar)
# compute fraction
varFrac_linear = var_term / sum( var_term )
names(varFrac_linear) = c(colnames(Eta), "Residuals")
return( varFrac_linear )
})
getVarianceComponents = function( fit ){
varComp <- lapply(lme4::VarCorr(fit), function(fit) attr(fit, "stddev")^2)
# order variables by name
# essential so that all models are ordered the same
varComp = varComp[order(names(varComp))]
# extract predictor for each fixed effect
idx = which(colnames(fit@pp$X) != "(Intercept)")
# if there are fixed effects
if( length(idx) > 0){
# this part is now in 1.5.2
# better estimates of fixed effects
fxeff = sapply( idx, function(i){
fit@pp$X[,i] * lme4::fixef(fit)[i]
})
colnames(fxeff) = colnames(fit@pp$X)[idx]
# compute variance of each fixed effect
N = nrow(fxeff)
# variance of eahc term
fixedVar = apply(fxeff, 2, var) * (N-1) / N
# variance of sum of terms
varFixedTotal = var(rowSums(fxeff)) * (N-1) / N
# scale variance by the sum and the total variance
for( key in names(fixedVar)){
varComp[[key]] = as.array(fixedVar[[key]] / sum(fixedVar) * varFixedTotal)
}
}
# get residuals
varComp$Residuals = attr(lme4::VarCorr(fit), 'sc')^2
names(varComp$Residuals) = ''
return(varComp)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.