Description Usage Arguments Details Value Author(s) See Also Examples
Classify droplets as "NN", "NP", "PN" or "PP". The
classification is based on upper bounds for negative readings and lower
bounds for positive readings; see the details and parameters for more
detail. If required (see the trainingData
parameter), droplets that
are not classified will be given the label "N/A".
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 | gridClassify(
droplets,
ch1NNThreshold = 6500,
ch2NNThreshold = 1900,
ch1NPThreshold = 6500,
ch2NPThreshold = 5000,
ch1PNThreshold = 10000,
ch2PNThreshold = 2900,
ch1PPThreshold = 7500,
ch2PPThreshold = 5000,
...
)
## S4 method for signature 'data.frame'
gridClassify(
droplets,
ch1NNThreshold = 6500,
ch2NNThreshold = 1900,
ch1NPThreshold = 6500,
ch2NPThreshold = 5000,
ch1PNThreshold = 10000,
ch2PNThreshold = 2900,
ch1PPThreshold = 7500,
ch2PPThreshold = 5000,
trainingData = TRUE,
fullTable = TRUE,
naLabel = ddpcr$rain
)
## S4 method for signature 'ddpcrWell'
gridClassify(
droplets,
ch1NNThreshold = 6500,
ch2NNThreshold = 1900,
ch1NPThreshold = 6500,
ch2NPThreshold = 5000,
ch1PNThreshold = 10000,
ch2PNThreshold = 2900,
ch1PPThreshold = 7500,
ch2PPThreshold = 5000,
classMethodLabel = "grid",
naLabel = ddpcr$rain
)
## S4 method for signature 'ddpcrPlate'
gridClassify(
droplets,
ch1NNThreshold = 6500,
ch2NNThreshold = 1900,
ch1NPThreshold = 6500,
ch2NPThreshold = 5000,
ch1PNThreshold = 10000,
ch2PNThreshold = 2900,
ch1PPThreshold = 7500,
ch2PPThreshold = 5000,
classMethodLabel = "grid",
naLabel = ddpcr$rain
)
|
droplets |
A |
ch1NNThreshold |
The channel 1 upper bound for the NN class. Defaults to 6500. |
ch2NNThreshold |
The channel 2 upper bound for the NN class. Defaults to 1900. |
ch1NPThreshold |
The channel 1 upper bound for the NP class. Defaults to 6500. |
ch2NPThreshold |
The channel 2 lower bound for the NP class. Defaults to 5000. |
ch1PNThreshold |
The channel 1 lower bound for the PN class. Defaults to 10000. |
ch2PNThreshold |
The channel 2 upper bound for the PN class. Defaults to 2900. |
ch1PPThreshold |
The channel 1 lower bound for the PP class. Defaults to 7500. |
ch2PPThreshold |
The channel 2 lower bound for the PP class. Defaults to 5000. |
... |
Other options depending on the type of |
trainingData |
Whether to use the output as training data. If
|
fullTable |
Whether to return a data frame including amplitude
figures. If |
naLabel |
The label to use for unclassified droplets. Should be either ddpcr$na ("N/A") or ddpcr$rain ("Rain"). Defaults to ddpcr$rain. |
classMethodLabel |
A name (as a character string) of the classification method. Defaults to "grid". |
The threshold
parameters correspond to those in the
following diagram:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
Specifically:
ch1NNThreshold
,
ch2NNThreshold
,
ch1PNThreshold
,
ch2PNThreshold
,
ch1NPThreshold
,
ch2NPThreshold
,
ch1PPThreshold
,
ch2PPThreshold
.
If droplets
is a data frame, return a data frame or factor
(depending on the trainingData
and fullTable
parameters) with
a classification for droplets in the chosen regions.
If droplets
is a ddpcrWell
object, return
a ddpcrWell
object with the appropriate classification.
If droplets
is a ddpcrPlate
object, return
a ddpcrPlate
object with the appropriate classification.
Anthony Chiu, anthony.chiu@cruk.manchester.ac.uk
thresholdClassify
is a special case of this
function.
removeDropletClasses
retrieves a data frame with the
"N/A" (and "Rain") droplets removed. This can used for transforming
a grid-like classification into usable training data.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 | ## Use a grid to set training data for a data frame.
sgCl <- gridClassify(KRASdata[["E03"]],
ch1NNThreshold=5700, ch2NNThreshold=1700,
ch1NPThreshold=5400, ch2NPThreshold=5700,
ch1PNThreshold=9700, ch2PNThreshold=2050,
ch1PPThreshold=7200, ch2PPThreshold=4800)
str(sgCl)
## For data frame only, we can set the trainingData flag to FALSE so that
## the unclassified droplets are retained but labelled as "N/A"
sgCl <- gridClassify(KRASdata[["E03"]],
ch1NNThreshold=5700, ch2NNThreshold=1700,
ch1NPThreshold=5400, ch2NPThreshold=5700,
ch1PNThreshold=9700, ch2PNThreshold=2050,
ch1PPThreshold=7200, ch2PPThreshold=4800,
trainingData=FALSE)
dropletPlot(sgCl, cMethod="class")
## The same works for ddpcrWell objects.
aWell <- ddpcrWell(well=KRASdata[["E03"]])
aWell <- gridClassify(aWell,
ch1NNThreshold=5700, ch2NNThreshold=1700,
ch1NPThreshold=5400, ch2NPThreshold=5700,
ch1PNThreshold=9700, ch2PNThreshold=2050,
ch1PPThreshold=7200, ch2PPThreshold=4800)
str(aWell)
## ddpcrPlate objects work in exactly the same way.
krasPlate <- ddpcrPlate(wells=KRASdata)
krasPlate <- gridClassify(krasPlate)
lapply(plateClassification(krasPlate, withAmplitudes=TRUE), head, n=1)
## The default classification method (column name) is 'gridClassify',
## which may be a bit long. It can be changed.
krasPlate <- gridClassify(krasPlate, classMethodLabel="training")
lapply(plateClassification(krasPlate, withAmplitudes=TRUE), head, n=1)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.