Nothing
#' Get data for silhouette demo
#'
#' @return A matrix of expression profile, sample in raws, time in columns.
#'
#' @examples
#' data <- get_demo_silhouette()
#'
#' @export
get_demo_silhouette <- function() {
readRDS(system.file("extdata/data_silhouette.rds", package="timeOmics",
mustWork = TRUE))
}
#' @importFrom dplyr group_by
#' @importFrom dplyr summarise
silhouette <- function(dmatrix, # distance matrix
cluster) # cluster vector of size ncol(dmatrix)
{
#-- checking input parameters ---------------------------------------------#
#--------------------------------------------------------------------------#
#-- check dmatrix
stopifnot(is.matrix(dmatrix) || is.data.frame(dmatrix))
dmatrix <- as.matrix(dmatrix)
stopifnot(nrow(dmatrix) == ncol(dmatrix))
#-- check cluster
stopifnot(is.vector(cluster) || is.factor(cluster))
stopifnot(length(cluster) == ncol(dmatrix))
cluster <- factor(cluster)
cluster.levels <- levels(cluster)
#- compute silhouette -----------------------------------------------------#
#--------------------------------------------------------------------------#
average.dist <- matrix(ncol = length(cluster.levels), nrow = nrow(dmatrix))
result <- vector(length = ncol(dmatrix))
for(i in 1:nrow(dmatrix)){
for(j in 1:length(cluster.levels)){
index.tmp <- cluster == cluster.levels[j]
if(cluster.levels[j] == cluster[i]) {
# we do not include d(i,i) in the sum
# can introduce NaN if size of cluster is 1
# but this is handle after because score is 0 when size of cluster is 1
index.tmp[i] <- FALSE
}
average.dist[i,j] <- mean(dmatrix[i, index.tmp])
}
A <- average.dist[i, cluster[i]] # a : inside
B <- min(average.dist[i,-c(cluster[i])]) # b
result[i] <- silhoutte.formula(A = A, B = B)
}
#-- return
to_return <- list()
#-- silhouette coefficient by feature
to_return[["feature"]] <- cbind(colnames(dmatrix), cluster, as.data.frame(result))
colnames(to_return[["feature"]]) <- c("feature", "cluster", "silhouette.coef")
#-- average silhouette coefficient
to_return[["average"]] <- mean(to_return[["feature"]][["silhouette.coef"]])
#-- average silhouette coefficient by cluster
to_return[["average.cluster"]] <- dplyr::group_by(to_return[["feature"]], cluster) %>%
dplyr::summarise(silhouette.coef = mean(silhouette.coef)) %>%
as.data.frame
return(to_return)
}
#' dmatrix.spearman.dissimilarity
#'
#' Compute the spearman dissimilarity distance.
#'
#' @param X A numeric matrix with feature in colnames
#'
#' @return
#' Return a dissimilarity matrix of size PxP.
#'
dmatrix.spearman.dissimilarity <- function(X){
# between 0 and 2
dmatrix <- cor(x = X, use = 'pairwise.complete.obs',
method = 'spearman')
dmatrix <- 1 - dmatrix
return(dmatrix)
}
# dmatrix.proportionality.distance <- function(X){
# # clr first
# dmatrix <- matrix(ncol = ncol(X), nrow = ncol(X))
# rownames(dmatrix) <- colnames(dmatrix) <- colnames(X)
# for(i in 1:ncol(X)){
# for(j in 1:ncol(X)){
# dmatrix[i,j] <- var(X[,i] - X[,j])/var(X[,i] + X[,j])
# }
# }
# return(dmatrix)
# }
silhoutte.formula <- function(A,B){
# A average dist inside cluster; # B: min average dist outside
stopifnot(is.vector(A) && is.vector(B))
stopifnot(is.numeric(A) && is.numeric(B))
if(!(is.finite(A))){
return(0)
}else{
return((B - A)/(max(A,B)))
}
}
wrapper.silhouette <- function(X, cluster)
{
#-- checking input parameters ---------------------------------------------#
#--------------------------------------------------------------------------#
#-- check X
stopifnot(is.matrix(X) || is.data.frame(X))
X <- as.matrix(X)
#-- check cluster
stopifnot(is.vector(cluster) || is.factor(cluster))
stopifnot(length(cluster) == ncol(X))
cluster <- factor(cluster)
cluster.levels <- levels(cluster)
#-- compute distance matrix -----------------------------------------------#
#--------------------------------------------------------------------------#
dmatrix <- dmatrix.spearman.dissimilarity(X)
#- compute silhouette -----------------------------------------------------#
#--------------------------------------------------------------------------#
silhouette(dmatrix = dmatrix, cluster = cluster)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.