Nothing
#' Compare SingleCellExperiment objects
#'
#' Combine the data from several SingleCellExperiment objects and produce some
#' basic plots comparing them.
#'
#' @param sces named list of SingleCellExperiment objects to combine and
#' compare.
#' @param point.size size of points in scatter plots.
#' @param point.alpha opacity of points in scatter plots.
#' @param fits whether to include fits in scatter plots.
#' @param colours vector of colours to use for each dataset.
#'
#' @details
#' The returned list has three items:
#'
#' \describe{
#' \item{\code{RowData}}{Combined row data from the provided
#' SingleCellExperiments.}
#' \item{\code{ColData}}{Combined column data from the provided
#' SingleCellExperiments.}
#' \item{\code{Plots}}{Comparison plots
#' \describe{
#' \item{\code{Means}}{Boxplot of mean distribution.}
#' \item{\code{Variances}}{Boxplot of variance distribution.}
#' \item{\code{MeanVar}}{Scatter plot with fitted lines showing the
#' mean-variance relationship.}
#' \item{\code{LibrarySizes}}{Boxplot of the library size
#' distribution.}
#' \item{\code{ZerosGene}}{Boxplot of the percentage of each gene
#' that is zero.}
#' \item{\code{ZerosCell}}{Boxplot of the percentage of each cell
#' that is zero.}
#' \item{\code{MeanZeros}}{Scatter plot with fitted lines showing
#' the mean-zeros relationship.}
#' \item{\code{VarGeneCor}}{Heatmap of correlation of the 100 most
#' variable genes.}
#' }
#' }
#' }
#'
#' The plots returned by this function are created using
#' \code{\link[ggplot2]{ggplot}} and are only a sample of the kind of plots you
#' might like to consider. The data used to create these plots is also returned
#' and should be in the correct format to allow you to create further plots
#' using \code{\link[ggplot2]{ggplot}}.
#'
#' @return List containing the combined datasets and plots.
#' @examples
#' sim1 <- splatSimulate(nGenes = 1000, batchCells = 20)
#' sim2 <- simpleSimulate(nGenes = 1000, nCells = 20)
#' comparison <- compareSCEs(list(Splat = sim1, Simple = sim2))
#' names(comparison)
#' names(comparison$Plots)
#' @importFrom ggplot2 ggplot aes_string geom_point geom_smooth geom_boxplot
#' geom_violin geom_tile scale_y_continuous scale_y_log10 scale_x_log10
#' scale_colour_manual scale_fill_manual scale_fill_distiller coord_fixed
#' facet_wrap xlab ylab ggtitle theme_minimal
#' @importFrom S4Vectors metadata<- metadata
#' @importFrom SingleCellExperiment cpm<- cpm
#' @importFrom stats cor
#' @export
compareSCEs <- function(sces, point.size = 0.1, point.alpha = 0.1,
fits = TRUE, colours = NULL) {
checkmate::assertList(sces, types = "SingleCellExperiment",
any.missing = FALSE, min.len = 1, names = "unique")
checkmate::assertNumber(point.size, finite = TRUE)
checkmate::assertNumber(point.alpha, lower = 0, upper = 1)
checkmate::assertLogical(fits, any.missing = FALSE, len = 1)
if (!is.null(colours)) {
checkmate::assertCharacter(colours, any.missing = FALSE,
len = length(sces))
} else {
colours <- scales::hue_pal()(length(sces))
}
for (name in names(sces)) {
sce <- sces[[name]]
rowData(sce)$Dataset <- name
colData(sce)$Dataset <- name
sce <- scater::addPerCellQC(sce)
sce <- scater::addPerFeatureQC(sce)
cpm(sce) <- as.matrix(scater::calculateCPM(sce))
sce <- addFeatureStats(sce, "counts")
sce <- addFeatureStats(sce, "cpm")
sce <- addFeatureStats(sce, "cpm", log = TRUE)
n.features <- colData(sce)$detected
colData(sce)$PctZero <- 100 * (1 - n.features / nrow(sce))
rowData(sce)$PctZero <- 100 - rowData(sce)$detected
var.genes <- rev(order(rowData(sce)$VarLogCPM))[seq_len(100)]
var.cpm <- log2(cpm(sce)[var.genes, ] + 1)
var.cors <- as.data.frame.table(cor(t(var.cpm), method = "spearman"))
colnames(var.cors) <- c("GeneA", "GeneB", "Correlation")
var.cors$VarGeneA <- rep(paste0("VarGene", seq_len(100)), 100)
var.cors$VarGeneB <- rep(paste0("VarGene", seq_len(100)), each = 100)
var.cors$Dataset <- name
var.cors <- var.cors[, c("Dataset", "GeneA", "GeneB", "VarGeneA",
"VarGeneB", "Correlation")]
metadata(sce)$VarGeneCorrelation <- var.cors
sces[[name]] <- sce
}
features <- rowData(sces[[1]])
cells <- colData(sces[[1]])
var.cors <- metadata(sces[[1]])$VarGeneCorrelation
if (length(sces) > 1) {
for (name in names(sces)[-1]) {
sce <- sces[[name]]
features <- rbindMatched(features, rowData(sce))
cells <- rbindMatched(cells, colData(sce))
var.cors <- rbindMatched(var.cors, metadata(sce)$VarGeneCorrelation)
}
}
features$Dataset <- factor(features$Dataset, levels = names(sces))
cells$Dataset <- factor(cells$Dataset, levels = names(sces))
var.cors$Dataset <- factor(var.cors$Dataset, levels = names(sces))
features <- data.frame(features)
cells <- data.frame(cells)
means <- ggplot(features,
aes_string(x = "Dataset", y = "MeanLogCPM",
colour = "Dataset")) +
geom_violin(aes_string(fill = "Dataset"),
draw_quantiles = c(0.25, 0.5, 0.75),
colour = "white", alpha = 0.3, size = 0.8) +
geom_boxplot(notch = TRUE, width = 0.1, size = 0.8) +
scale_colour_manual(values = colours) +
scale_fill_manual(values = colours) +
ylab(expression(paste("Mean ", log[2], "(CPM + 1)"))) +
ggtitle("Distribution of mean expression") +
theme_minimal()
vars <- ggplot(features,
aes_string(x = "Dataset", y = "VarLogCPM",
colour = "Dataset")) +
geom_violin(aes_string(fill = "Dataset"),
draw_quantiles = c(0.25, 0.5, 0.75),
colour = "white", alpha = 0.3, size = 0.8) +
geom_boxplot(notch = TRUE, width = 0.1, size = 0.8) +
scale_colour_manual(values = colours) +
scale_fill_manual(values = colours) +
ylab(expression(paste("Variance ", log[2], "(CPM + 1)"))) +
ggtitle("Distribution of variance") +
theme_minimal()
mean.var <- ggplot(features,
aes_string(x = "MeanLogCPM", y = "VarLogCPM",
colour = "Dataset", fill = "Dataset")) +
geom_point(size = point.size, alpha = point.alpha) +
scale_colour_manual(values = colours) +
scale_fill_manual(values = colours) +
xlab(expression(paste("Mean ", log[2], "(CPM + 1)"))) +
ylab(expression(paste("Variance ", log[2], "(CPM + 1)"))) +
ggtitle("Mean-variance relationship") +
theme_minimal()
libs <- ggplot(cells,
aes_string(x = "Dataset", y = "sum",
colour = "Dataset")) +
geom_violin(aes_string(fill = "Dataset"),
draw_quantiles = c(0.25, 0.5, 0.75),
colour = "white", alpha = 0.3, size = 0.8) +
geom_boxplot(notch = TRUE, width = 0.1, size = 0.8) +
scale_y_continuous(labels = scales::comma) +
scale_colour_manual(values = colours) +
scale_fill_manual(values = colours) +
ylab("Total counts per cell") +
ggtitle("Distribution of library sizes") +
theme_minimal()
z.gene <- ggplot(features,
aes_string(x = "Dataset", y = "PctZero",
colour = "Dataset")) +
geom_violin(aes_string(fill = "Dataset"),
draw_quantiles = c(0.25, 0.5, 0.75),
colour = "white", alpha = 0.3, size = 0.8) +
geom_boxplot(notch = TRUE, width = 0.1, size = 0.8) +
scale_y_continuous(limits = c(0, 100)) +
scale_colour_manual(values = colours) +
scale_fill_manual(values = colours) +
ylab("Percentage zeros per gene") +
ggtitle("Distribution of zeros per gene") +
theme_minimal()
z.cell <- ggplot(cells,
aes_string(x = "Dataset", y = "PctZero",
colour = "Dataset")) +
geom_violin(aes_string(fill = "Dataset"),
draw_quantiles = c(0.25, 0.5, 0.75),
colour = "white", alpha = 0.3, size = 0.8) +
geom_boxplot(notch = TRUE, width = 0.1, size = 0.8) +
scale_y_continuous(limits = c(0, 100)) +
scale_colour_manual(values = colours) +
scale_fill_manual(values = colours) +
ylab("Percentage zeros per cell") +
ggtitle("Distribution of zeros per cell") +
theme_minimal()
mean.zeros <- ggplot(features,
aes_string(x = "mean",
y = "PctZero",
colour = "Dataset", fill = "Dataset")) +
geom_point(size = point.size, alpha = point.alpha) +
scale_x_log10(labels = scales::comma) +
scale_colour_manual(values = colours) +
scale_fill_manual(values = colours) +
xlab("Mean count") +
ylab("Percentage zeros") +
ggtitle("Mean-zeros relationship") +
theme_minimal()
var.correlation <- ggplot(var.cors,
aes_string(x = "VarGeneA", y = "VarGeneB",
fill = "Correlation")) +
geom_tile() +
scale_fill_distiller(palette = "RdBu", limits = c(-1, 1)) +
coord_fixed() +
facet_wrap(~ Dataset) +
ggtitle("Correlation - 100 variable genes") +
theme_minimal() +
theme(axis.title = element_blank(),
axis.text = element_blank())
if (fits) {
mean.var <- mean.var + geom_smooth(method = "gam",
formula = y ~ s(x, bs = "cs"))
mean.zeros <- mean.zeros + geom_smooth(method = "gam",
formula = y ~ s(x, bs = "cs"))
}
comparison <- list(RowData = features,
ColData = cells,
Plots = list(Means = means,
Variances = vars,
MeanVar = mean.var,
LibrarySizes = libs,
ZerosGene = z.gene,
ZerosCell = z.cell,
MeanZeros = mean.zeros,
VarGeneCor = var.correlation))
return(comparison)
}
#' Diff SingleCellExperiment objects
#'
#' Combine the data from several SingleCellExperiment objects and produce some
#' basic plots comparing them to a reference.
#'
#' @param sces named list of SingleCellExperiment objects to combine and
#' compare.
#' @param ref string giving the name of the SingleCellExperiment to use as the
#' reference
#' @param point.size size of points in scatter plots.
#' @param point.alpha opacity of points in scatter plots.
#' @param fits whether to include fits in scatter plots.
#' @param colours vector of colours to use for each dataset.
#'
#' @details
#'
#' This function aims to look at the differences between a reference
#' SingleCellExperiment and one or more others. It requires each
#' SingleCellExperiment to have the same dimensions. Properties are compared by
#' ranks, for example when comparing the means the values are ordered and the
#' differences between the reference and another dataset plotted. A series of
#' Q-Q plots are also returned.
#'
#' The returned list has five items:
#'
#' \describe{
#' \item{\code{Reference}}{The SingleCellExperiment used as the reference.}
#' \item{\code{RowData}}{Combined feature data from the provided
#' SingleCellExperiments.}
#' \item{\code{ColData}}{Combined column data from the provided
#' SingleCellExperiments.}
#' \item{\code{Plots}}{Difference plots
#' \describe{
#' \item{\code{Means}}{Boxplot of mean differences.}
#' \item{\code{Variances}}{Boxplot of variance differences.}
#' \item{\code{MeanVar}}{Scatter plot showing the difference from
#' the reference variance across expression ranks.}
#' \item{\code{LibraeySizes}}{Boxplot of the library size
#' differences.}
#' \item{\code{ZerosGene}}{Boxplot of the differences in the
#' percentage of each gene that is zero.}
#' \item{\code{ZerosCell}}{Boxplot of the differences in the
#' percentage of each cell that is zero.}
#' \item{\code{MeanZeros}}{Scatter plot showing the difference from
#' the reference percentage of zeros across expression ranks.}
#' }
#' }
#' \item{\code{QQPlots}}{Quantile-Quantile plots
#' \describe{
#' \item{\code{Means}}{Q-Q plot of the means.}
#' \item{\code{Variances}}{Q-Q plot of the variances.}
#' \item{\code{LibrarySizes}}{Q-Q plot of the library sizes.}
#' \item{\code{ZerosGene}}{Q-Q plot of the percentage of zeros per
#' gene.}
#' \item{\code{ZerosCell}}{Q-Q plot of the percentage of zeros per
#' cell.}
#' }
#' }
#' }
#'
#' The plots returned by this function are created using
#' \code{\link[ggplot2]{ggplot}} and are only a sample of the kind of plots you
#' might like to consider. The data used to create these plots is also returned
#' and should be in the correct format to allow you to create further plots
#' using \code{\link[ggplot2]{ggplot}}.
#'
#' @return List containing the combined datasets and plots.
#' @examples
#' sim1 <- splatSimulate(nGenes = 1000, batchCells = 20)
#' sim2 <- simpleSimulate(nGenes = 1000, nCells = 20)
#' difference <- diffSCEs(list(Splat = sim1, Simple = sim2), ref = "Simple")
#' names(difference)
#' names(difference$Plots)
#' @importFrom ggplot2 ggplot aes_string geom_point geom_boxplot xlab ylab
#' ggtitle theme_minimal geom_hline geom_abline scale_colour_manual
#' scale_fill_manual
#' @importFrom SingleCellExperiment cpm<-
#' @export
diffSCEs <- function(sces, ref, point.size = 0.1, point.alpha = 0.1,
fits = TRUE, colours = NULL) {
checkmate::assertList(sces, types = "SingleCellExperiment",
any.missing = FALSE, min.len = 2, names = "unique")
checkmate::assertString(ref)
checkmate::assertNumber(point.size, finite = TRUE)
checkmate::assertNumber(point.alpha, lower = 0, upper = 1)
checkmate::assertLogical(fits, any.missing = FALSE, len = 1)
if (!(ref %in% names(sces))) {
stop("'ref' must be the name of a SingleCellExperiment in 'sces'")
} else {
ref.idx <- which(names(sces) == ref)
}
if (!is.null(colours)) {
checkmate::assertCharacter(colours, any.missing = FALSE,
len = length(sces) - 1)
} else {
colours <- scales::hue_pal()(length(sces))
colours <- colours[-ref.idx]
}
ref.dim <- dim(sces[[ref]])
for (name in names(sces)) {
sce <- sces[[name]]
if (!identical(dim(sce), ref.dim)) {
stop("all datasets in 'sces' must have the same dimensions")
}
rowData(sce)$Dataset <- name
colData(sce)$Dataset <- name
sce <- scater::addPerCellQC(sce)
sce <- scater::addPerFeatureQC(sce)
cpm(sce) <- as.matrix(scater::calculateCPM(sce))
sce <- addFeatureStats(sce, "counts")
sce <- addFeatureStats(sce, "cpm", log = TRUE)
n.features <- colData(sce)$detected
colData(sce)$PctZero <- 100 * (1 - n.features / nrow(sce))
rowData(sce)$RankCounts <- rank(rowData(sce)$mean)
rowData(sce)$PctZero <- 100 - rowData(sce)$detected
sces[[name]] <- sce
}
ref.sce <- sces[[ref]]
ref.means <- sort(rowData(ref.sce)$MeanLogCPM)
ref.vars <- sort(rowData(ref.sce)$VarLogCPM)
ref.libs <- sort(colData(ref.sce)$sum)
ref.z.gene <- sort(rowData(ref.sce)$PctZero)
ref.z.cell <- sort(colData(ref.sce)$PctZero)
ref.rank.ord <- order(rowData(ref.sce)$RankCounts)
ref.vars.rank <- rowData(ref.sce)$VarLogCPM[ref.rank.ord]
ref.z.gene.rank <- rowData(ref.sce)$PctZero[ref.rank.ord]
for (name in names(sces)) {
sce <- sces[[name]]
rowData(sce)$RefRankMeanLogCPM <- ref.means[
rank(rowData(sce)$MeanLogCPM)]
rowData(sce)$RankDiffMeanLogCPM <- rowData(sce)$MeanLogCPM -
rowData(sce)$RefRankMeanLogCPM
rowData(sce)$RefRankVarLogCPM <- ref.vars[rank(rowData(sce)$VarLogCPM)]
rowData(sce)$RankDiffVarLogCPM <- rowData(sce)$VarLogCPM -
rowData(sce)$RefRankVarLogCPM
colData(sce)$RefRankLibSize <- ref.libs[rank(colData(sce)$sum)]
colData(sce)$RankDiffLibSize <- colData(sce)$sum -
colData(sce)$RefRankLibSize
rowData(sce)$RefRankZeros <- ref.z.gene[rank(rowData(sce)$PctZero)]
rowData(sce)$RankDiffZeros <- rowData(sce)$PctZero -
rowData(sce)$RefRankZeros
colData(sce)$RefRankZeros <- ref.z.cell[rank(
colData(sce)$PctZero)]
colData(sce)$RankDiffZeros <- colData(sce)$PctZero -
colData(sce)$RefRankZeros
rowData(sce)$MeanRankVarDiff <- rowData(sce)$VarLogCPM -
ref.vars.rank[rowData(sce)$RankCounts]
rowData(sce)$MeanRankZerosDiff <- rowData(sce)$PctZero -
ref.z.gene.rank[rowData(sce)$RankCounts]
sces[[name]] <- sce
}
ref.sce <- sces[[ref]]
sces[[ref]] <- NULL
features <- rowData(sces[[1]])
cells <- colData(sces[[1]])
if (length(sces) > 1) {
for (name in names(sces)[-1]) {
sce <- sces[[name]]
features <- rbindMatched(features, rowData(sce))
cells <- rbindMatched(cells, colData(sce))
}
}
features$Dataset <- factor(features$Dataset, levels = names(sces))
cells$Dataset <- factor(cells$Dataset, levels = names(sces))
features <- data.frame(features)
cells <- data.frame(cells)
means <- ggplot(features,
aes_string(x = "Dataset", y = "RankDiffMeanLogCPM",
colour = "Dataset")) +
geom_hline(yintercept = 0, colour = "red") +
geom_boxplot(notch = TRUE, width = 0.1, size = 0.8) +
scale_colour_manual(values = colours) +
ylab(expression(paste("Rank difference mean ", log[2], "(CPM + 1)"))) +
ggtitle("Difference in mean expression") +
theme_minimal()
vars <- ggplot(features,
aes_string(x = "Dataset", y = "RankDiffVarLogCPM",
colour = "Dataset")) +
geom_hline(yintercept = 0, colour = "red") +
geom_boxplot(notch = TRUE, width = 0.1, size = 0.8) +
scale_colour_manual(values = colours) +
ylab(expression(paste("Rank difference variance ", log[2],
"(CPM + 1)"))) +
ggtitle("Difference in variance") +
theme_minimal()
mean.var <- ggplot(features,
aes_string(x = "RankCounts", y = "MeanRankVarDiff",
colour = "Dataset", fill = "Dataset")) +
geom_hline(yintercept = 0, colour = "red") +
geom_point(size = point.size, alpha = point.alpha) +
scale_colour_manual(values = colours) +
scale_fill_manual(values = colours) +
xlab("Expression rank") +
ylab(expression(paste("Difference in variance ", log[2],
"(CPM + 1)"))) +
ggtitle("Difference in mean-variance relationship") +
theme_minimal()
libs <- ggplot(cells,
aes_string(x = "Dataset", y = "RankDiffLibSize",
colour = "Dataset")) +
geom_hline(yintercept = 0, colour = "red") +
geom_boxplot(notch = TRUE, width = 0.1, size = 0.8) +
scale_colour_manual(values = colours) +
ylab(paste("Rank difference library size")) +
ggtitle("Difference in library sizes") +
theme_minimal()
z.gene <- ggplot(features,
aes_string(x = "Dataset", y = "RankDiffZeros",
colour = "Dataset")) +
geom_hline(yintercept = 0, colour = "red") +
geom_boxplot(notch = TRUE, width = 0.1, size = 0.8) +
scale_colour_manual(values = colours) +
ylab(paste("Rank difference percentage zeros")) +
ggtitle("Difference in zeros per gene") +
theme_minimal()
z.cell <- ggplot(cells,
aes_string(x = "Dataset", y = "RankDiffZeros",
colour = "Dataset")) +
geom_hline(yintercept = 0, colour = "red") +
geom_boxplot(notch = TRUE, width = 0.1, size = 0.8) +
scale_colour_manual(values = colours) +
ylab(paste("Rank difference percentage zeros")) +
ggtitle("Difference in zeros per cell") +
theme_minimal()
mean.zeros <- ggplot(features,
aes_string(x = "RankCounts", y = "MeanRankZerosDiff",
colour = "Dataset", fill = "Dataset")) +
geom_hline(yintercept = 0, colour = "red") +
geom_point(size = point.size, alpha = point.alpha) +
scale_colour_manual(values = colours) +
scale_fill_manual(values = colours) +
xlab("Expression rank") +
ylab("Difference in percentage zeros per gene") +
ggtitle("Difference in mean-zeros relationship") +
theme_minimal()
means.qq <- ggplot(features,
aes_string(x = "RefRankMeanLogCPM", y = "MeanLogCPM",
colour = "Dataset")) +
geom_abline(intercept = 0, slope = 1, colour = "red") +
geom_point(size = point.size) +
scale_colour_manual(values = colours) +
xlab(expression(paste("Reference mean ", log[2], "(CPM + 1)"))) +
ylab(expression(paste("Alternative mean ", log[2], "(CPM + 1)"))) +
ggtitle("Ranked means") +
theme_minimal()
vars.qq <- ggplot(features,
aes_string(x = "RefRankVarLogCPM", y = "VarLogCPM",
colour = "Dataset")) +
geom_abline(intercept = 0, slope = 1, colour = "red") +
geom_point(size = point.size) +
scale_colour_manual(values = colours) +
xlab(expression(paste("Reference variance ", log[2], "(CPM + 1)"))) +
ylab(expression(paste("Alternative variance ", log[2], "(CPM + 1)"))) +
ggtitle("Ranked variances") +
theme_minimal()
libs.qq <- ggplot(cells,
aes_string(x = "RefRankLibSize", y = "sum",
colour = "Dataset")) +
geom_abline(intercept = 0, slope = 1, colour = "red") +
geom_point(size = point.size) +
scale_colour_manual(values = colours) +
xlab("Reference library size") +
ylab("Alternative library size") +
ggtitle("Ranked library sizes") +
theme_minimal()
z.gene.qq <- ggplot(features,
aes_string(x = "RefRankZeros",
y = "PctZero",
colour = "Dataset")) +
geom_abline(intercept = 0, slope = 1, colour = "red") +
geom_point(size = point.size) +
scale_colour_manual(values = colours) +
xlab("Reference percentage zeros") +
ylab("Alternative percentage zeros") +
ggtitle("Ranked percentage zeros per gene") +
theme_minimal()
z.cell.qq <- ggplot(cells,
aes_string(x = "RefRankZeros", y = "PctZero",
colour = "Dataset")) +
geom_abline(intercept = 0, slope = 1, colour = "red") +
geom_point(size = point.size) +
scale_colour_manual(values = colours) +
xlab("Reference percentage zeros") +
ylab("Alternative percentage zeros") +
ggtitle("Ranked percentage zeros per cell") +
theme_minimal()
if (fits) {
mean.var <- mean.var + geom_smooth(method = "gam",
formula = y ~ s(x, bs = "cs"))
mean.zeros <- mean.zeros + geom_smooth(method = "gam",
formula = y ~ s(x, bs = "cs"))
}
comparison <- list(Reference = ref.sce,
RowData = features,
ColData = cells,
Plots = list(Means = means,
Variances = vars,
MeanVar = mean.var,
LibrarySizes = libs,
ZerosGene = z.gene,
ZerosCell = z.cell,
MeanZeros = mean.zeros),
QQPlots = list(Means = means.qq,
Variances = vars.qq,
LibrarySizes = libs.qq,
ZerosGene = z.gene.qq,
ZerosCell = z.cell.qq))
return(comparison)
}
#' Make comparison panel
#'
#' Combine the plots from \code{compareSCEs} into a single panel.
#'
#' @param comp list returned by \code{\link{compareSCEs}}.
#' @param title title for the panel.
#' @param labels vector of labels for each of the seven plots.
#'
#' @return Combined panel plot
#'
#' @examples
#' \dontrun{
#' sim1 <- splatSimulate(nGenes = 1000, batchCells = 20)
#' sim2 <- simpleSimulate(nGenes = 1000, nCells = 20)
#' comparison <- compareSCEs(list(Splat = sim1, Simple = sim2))
#' panel <- makeCompPanel(comparison)
#' }
#'
#' @importFrom ggplot2 theme element_blank
#' @export
makeCompPanel <- function(comp, title = "Comparison",
labels = c("Means", "Variance",
"Mean-variance relationship",
"Library size", "Zeros per gene",
"Zeros per cell",
"Mean-zeros relationship")) {
checkDependencies(deps = "cowplot")
checkmate::assertList(comp, any.missing = FALSE, len = 3)
checkmate::checkString(title)
checkmate::checkCharacter(labels, len = 7)
plots <- list(p1 = comp$Plots$Means, p2 = comp$Plots$Variances,
p3 = comp$Plots$MeanVar, p4 = comp$Plots$LibrarySizes,
p5 = comp$Plots$ZerosGene, p6 = comp$Plots$ZerosCell,
p7 = comp$Plots$MeanZeros)
# Remove titles and legends
for (plot in names(plots)) {
plots[[plot]] <- plots[[plot]] + theme(legend.position = "none",
plot.title = element_blank())
}
# Remove x-axis title from some plots
for (plot in paste0("p", c(1, 2, 4, 5, 6))) {
plots[[plot]] <- plots[[plot]] + theme(axis.title.x = element_blank())
}
plots$leg <- cowplot::get_legend(plots$p3 +
theme(legend.position = "bottom"))
panel <- cowplot::ggdraw() +
cowplot::draw_label(title, 0.5, 0.98,
fontface = "bold", size = 18) +
cowplot::draw_label(labels[1], 0.01, 0.95,
fontface = "bold", hjust = 0, vjust = 0) +
cowplot::draw_plot(plots$p1, 0.0, 0.74, 0.5, 0.20) +
cowplot::draw_label(labels[2], 0.51, 0.95,
fontface = "bold", hjust = 0, vjust = 0) +
cowplot::draw_plot(plots$p2, 0.5, 0.74, 0.5, 0.20) +
cowplot::draw_label(labels[3], 0.01, 0.70,
fontface = "bold", hjust = 0, vjust = 0) +
cowplot::draw_plot(plots$p3, 0.0, 0.49, 0.5, 0.20) +
cowplot::draw_label(labels[4], 0.51, 0.70,
fontface = "bold", hjust = 0, vjust = 0) +
cowplot::draw_plot(plots$p4, 0.5, 0.49, 0.5, 0.20) +
cowplot::draw_label(labels[5], 0.01, 0.45,
fontface = "bold", hjust = 0, vjust = 0) +
cowplot::draw_plot(plots$p5, 0.0, 0.24, 0.5, 0.20) +
cowplot::draw_label(labels[6], 0.51, 0.45,
fontface = "bold", hjust = 0, vjust = 0) +
cowplot::draw_plot(plots$p6, 0.5, 0.24, 0.5, 0.20) +
cowplot::draw_label(labels[7], 0.01, 0.21,
fontface = "bold", hjust = 0, vjust = 0) +
cowplot::draw_plot(plots$p7, 0.0, 0.00, 0.5, 0.20) +
cowplot::draw_plot(plots$leg, 0.5, 0.00, 0.5, 0.20)
return(panel)
}
#' Make difference panel
#'
#' Combine the plots from \code{diffSCEs} into a single panel.
#'
#' @param diff list returned by \code{\link{diffSCEs}}.
#' @param title title for the panel.
#' @param labels vector of labels for each of the seven sections.
#'
#' @return Combined panel plot
#'
#' @examples
#' \dontrun{
#' sim1 <- splatSimulate(nGenes = 1000, batchCells = 20)
#' sim2 <- simpleSimulate(nGenes = 1000, nCells = 20)
#' difference <- diffSCEs(list(Splat = sim1, Simple = sim2), ref = "Simple")
#' panel <- makeDiffPanel(difference)
#' }
#'
#' @importFrom ggplot2 theme element_blank
#' @export
makeDiffPanel <- function(diff, title = "Difference comparison",
labels = c("Means", "Variance", "Library size",
"Zeros per cell", "Zeros per gene",
"Mean-variance relationship",
"Mean-zeros relationship")) {
checkDependencies(deps = "cowplot")
checkmate::assertList(diff, any.missing = FALSE, len = 5)
checkmate::checkString(title)
checkmate::checkCharacter(labels, len = 7)
plots <- list(p1 = diff$Plots$Means, p2 = diff$QQPlots$Means,
p3 = diff$Plots$Variances, p4 = diff$QQPlots$Variances,
p5 = diff$Plots$MeanVar, p6 = diff$Plots$LibrarySizes,
p7 = diff$QQPlots$LibrarySizes, p8 = diff$Plots$ZerosCell,
p9 = diff$QQPlots$ZerosCell, p10 = diff$Plots$ZerosGene,
p11 = diff$QQPlots$ZerosGene, p12 = diff$Plots$MeanZeros)
# Remove titles and legends
for (plot in names(plots)) {
plots[[plot]] <- plots[[plot]] + theme(legend.position = "none",
plot.title = element_blank())
}
# Remove x-axis title from some plots
for (plot in paste0("p", c(1, 3, 6, 8, 10))) {
plots[[plot]] <- plots[[plot]] + theme(axis.title.x = element_blank())
}
plots$leg <- cowplot::get_legend(plots$p5 +
theme(legend.position = "bottom"))
panel <- cowplot::ggdraw() +
cowplot::draw_label(title, 0.5, 0.98,
fontface = "bold", size = 18) +
cowplot::draw_label(labels[1], 0.0, 0.94,
fontface = "bold", hjust = 0, vjust = 0) +
cowplot::draw_plot(plots$p1, 0.0, 0.64, 0.18, 0.29) +
cowplot::draw_plot(plots$p2, 0.0, 0.32, 0.18, 0.29) +
cowplot::draw_label(labels[2], 0.21, 0.94,
fontface = "bold", hjust = 0, vjust = 0) +
cowplot::draw_plot(plots$p3, 0.21, 0.64, 0.18, 0.29) +
cowplot::draw_plot(plots$p4, 0.21, 0.32, 0.18, 0.29) +
cowplot::draw_label(labels[6], 0.0, 0.30,
fontface = "bold", hjust = 0, vjust = 0) +
cowplot::draw_plot(plots$p5, 0.0, 0.0, 0.38, 0.29) +
cowplot::draw_label(labels[3], 0.41, 0.94,
fontface = "bold", hjust = 0, vjust = 0) +
cowplot::draw_plot(plots$p6, 0.41, 0.64, 0.18, 0.29) +
cowplot::draw_plot(plots$p7, 0.41, 0.32, 0.18, 0.29) +
cowplot::draw_label(labels[4], 0.61, 0.94,
fontface = "bold", hjust = 0, vjust = 0) +
cowplot::draw_plot(plots$p8, 0.61, 0.64, 0.18, 0.29) +
cowplot::draw_plot(plots$p9, 0.61, 0.32, 0.18, 0.29) +
cowplot::draw_label(labels[7], 0.41, 0.30,
fontface = "bold", hjust = 0, vjust = 0) +
cowplot::draw_plot(plots$p12, 0.41, 0.0, 0.38, 0.29) +
cowplot::draw_label(labels[5], 0.81, 0.94,
fontface = "bold", hjust = 0, vjust = 0) +
cowplot::draw_plot(plots$p10, 0.81, 0.64, 0.18, 0.29) +
cowplot::draw_plot(plots$p11, 0.81, 0.32, 0.18, 0.29) +
cowplot::draw_plot(plots$leg, 0.81, 0.0, 0.2, 0.29)
return(panel)
}
#' Make overall panel
#'
#' Combine the plots from \code{compSCEs} and \code{diffSCEs} into a
#' single panel.
#'
#' @param comp list returned by \code{\link{compareSCEs}}.
#' @param diff list returned by \code{\link{diffSCEs}}.
#' @param title title for the panel.
#' @param row.labels vector of labels for each of the seven rows.
#'
#' @return Combined panel plot
#'
#' @examples
#' \dontrun{
#' sim1 <- splatSimulate(nGenes = 1000, batchCells = 20)
#' sim2 <- simpleSimulate(nGenes = 1000, nCells = 20)
#' comparison <- compareSCEs(list(Splat = sim1, Simple = sim2))
#' difference <- diffSCEs(list(Splat = sim1, Simple = sim2), ref = "Simple")
#' panel <- makeOverallPanel(comparison, difference)
#' }
#'
#' @importFrom ggplot2 theme element_blank
#' @export
makeOverallPanel <- function(comp, diff, title = "Overall comparison",
row.labels = c("Means", "Variance",
"Mean-variance relationship",
"Library size", "Zeros per cell",
"Zeros per gene",
"Mean-zeros relationship")) {
checkDependencies(deps = "cowplot")
checkmate::assertList(comp, any.missing = FALSE, len = 3)
checkmate::assertList(diff, any.missing = FALSE, len = 5)
checkmate::checkString(title)
checkmate::checkCharacter(row.labels, len = 7)
plots <- list(p1 = comp$Plots$Means, p2 = diff$Plots$Means,
p3 = diff$QQPlots$Means, p4 = comp$Plots$Variances,
p5 = diff$Plots$Variances, p6 = diff$QQPlots$Variances,
p7 = comp$Plots$MeanVar, p8 = diff$Plots$MeanVar,
p9 = comp$Plots$LibrarySizes, p10 = diff$Plots$LibrarySizes,
p11 = diff$QQPlots$LibrarySizes, p12 = comp$Plots$ZerosCell,
p13 = diff$Plots$ZerosCell, p14 = diff$QQPlots$ZerosCell,
p15 = comp$Plots$ZerosGene, p16 = diff$Plots$ZerosGene,
p17 = diff$QQPlots$ZerosGene, p18 = comp$Plots$MeanZeros,
p19 = diff$Plots$MeanZeros)
# Remove titles and legends
for (plot in names(plots)) {
plots[[plot]] <- plots[[plot]] + theme(legend.position = "none",
plot.title = element_blank())
}
# Remove x-axis title from some plots
for (plot in paste0("p", c(1, 2, 4, 5, 9, 10, 12, 13, 15, 16))) {
plots[[plot]] <- plots[[plot]] + theme(axis.title.x = element_blank())
}
plots$leg <- cowplot::get_legend(plots$p7 +
theme(legend.position = "bottom"))
panel <- cowplot::ggdraw() +
cowplot::draw_label(title, 0.5, 0.995,
fontface = "bold", size = 18) +
cowplot::draw_label(row.labels[1], 0.01, 0.985,
fontface = "bold", hjust = 0, vjust = 0) +
cowplot::draw_plot(plots$p1, 0.00, 0.86, 0.32, 0.12) +
cowplot::draw_plot(plots$p2, 0.34, 0.86, 0.32, 0.12) +
cowplot::draw_plot(plots$p3, 0.67, 0.86, 0.32, 0.12) +
cowplot::draw_label(row.labels[2], 0.01, 0.845,
fontface = "bold", hjust = 0, vjust = 0) +
cowplot::draw_plot(plots$p4, 0.00, 0.72, 0.32, 0.12) +
cowplot::draw_plot(plots$p5, 0.34, 0.72, 0.32, 0.12) +
cowplot::draw_plot(plots$p6, 0.67, 0.72, 0.32, 0.12) +
cowplot::draw_label(row.labels[3], 0.01, 0.705,
fontface = "bold", hjust = 0, vjust = 0) +
cowplot::draw_plot(plots$p7, 0.00, 0.58, 0.49, 0.12) +
cowplot::draw_plot(plots$p8, 0.51, 0.58, 0.49, 0.12) +
cowplot::draw_label(row.labels[4], 0.01, 0.56,
fontface = "bold", hjust = 0, vjust = 0) +
cowplot::draw_plot(plots$p9, 0.00, 0.44, 0.32, 0.12) +
cowplot::draw_plot(plots$p10, 0.34, 0.44, 0.32, 0.12) +
cowplot::draw_plot(plots$p11, 0.67, 0.44, 0.32, 0.12) +
cowplot::draw_label(row.labels[5], 0.01, 0.425,
fontface = "bold", hjust = 0, vjust = 0) +
cowplot::draw_plot(plots$p12, 0.00, 0.30, 0.32, 0.12) +
cowplot::draw_plot(plots$p13, 0.34, 0.30, 0.32, 0.12) +
cowplot::draw_plot(plots$p14, 0.67, 0.30, 0.32, 0.12) +
cowplot::draw_label(row.labels[6], 0.01, 0.285,
fontface = "bold", hjust = 0, vjust = 0) +
cowplot::draw_plot(plots$p15, 0.00, 0.16, 0.32, 0.12) +
cowplot::draw_plot(plots$p16, 0.34, 0.16, 0.32, 0.12) +
cowplot::draw_plot(plots$p17, 0.67, 0.16, 0.32, 0.12) +
cowplot::draw_label(row.labels[7], 0.01, 0.145,
fontface = "bold", hjust = 0, vjust = 0) +
cowplot::draw_plot(plots$p18, 0.00, 0.02, 0.49, 0.12) +
cowplot::draw_plot(plots$p19, 0.51, 0.02, 0.49, 0.12) +
cowplot::draw_plot(plots$leg, 0.00, 0.00, 1.00, 0.02)
return(panel)
}
#' Summarise diffSCEs
#'
#' Summarise the results of \code{\link{diffSCEs}}. Calculates the Median
#' Absolute Deviation (MAD), Mean Absolute Error (MAE), Root Mean Squared
#' Error (RMSE) and Kolmogorov-Smirnov (KS) statistics for the various
#' properties and ranks them.
#'
#' @param diff Output from \code{\link{diffSCEs}}
#'
#' @return data.frame with MADs, MAEs, RMSEs, scaled statistics and ranks
#' @examples
#' sim1 <- splatSimulate(nGenes = 1000, batchCells = 20)
#' sim2 <- simpleSimulate(nGenes = 1000, nCells = 20)
#' difference <- diffSCEs(list(Splat = sim1, Simple = sim2), ref = "Simple")
#' summary <- summariseDiff(difference)
#' head(summary)
#' @export
#' @importFrom SummarizedExperiment rowData
summariseDiff <- function(diff) {
row.stats <- c(Mean = "RankDiffMeanLogCPM",
Variance = "RankDiffVarLogCPM",
ZerosGene = "RankDiffZeros",
MeanVar = "MeanRankVarDiff",
MeanZeros = "MeanRankZerosDiff")
row.ks.stats <- c(Mean = "MeanLogCPM",
Variance = "VarLogCPM",
ZerosGene = "PctZero",
MeanVar = NA,
MeanZeros = NA)
row.mad <- summariseStats(diff$RowData, "Dataset", row.stats, "MAD")
row.mae <- summariseStats(diff$RowData, "Dataset", row.stats, "MAE")
row.rmse <- summariseStats(diff$RowData, "Dataset", row.stats, "RMSE")
row.ks <- summariseKS(diff$RowData,
SummarizedExperiment::rowData(diff$Reference),
"Dataset", row.ks.stats)
row.list <- list(row.mad, row.mae, row.rmse, row.ks)
row.list <- lapply(row.list, function(summ) {summ[, -c(1, 2)]})
row.summ <- data.frame(Dataset = row.mad$Dataset,
Statistic = row.mad$Statistic)
row.list <- c(row.summ, row.list)
row.summ <- do.call("cbind", row.list)
col.stats <- c(LibSize = "RankDiffLibSize",
ZerosCell = "RankDiffZeros")
col.ks.stats <- c(LibSize = "sum",
ZerosCell = "PctZero")
col.mad <- summariseStats(diff$ColData, "Dataset", col.stats, "MAD")
col.mae <- summariseStats(diff$ColData, "Dataset", col.stats, "MAE")
col.rmse <- summariseStats(diff$ColData, "Dataset", col.stats, "RMSE")
col.ks <- summariseKS(diff$ColData,
SummarizedExperiment::colData(diff$Reference),
"Dataset", col.ks.stats)
col.list <- list(col.mad, col.mae, col.rmse, col.ks)
col.list <- lapply(col.list, function(summ) {summ[, -c(1, 2)]})
col.summ <- data.frame(Dataset = col.mad$Dataset,
Statistic = col.mad$Statistic)
col.list <- c(col.summ, col.list)
col.summ <- do.call("cbind", col.list)
summary <- rbind(row.summ, col.summ)
return(summary)
}
#' Summarise statistics
#'
#' Summarise columns of a data.frame using a single measure.
#'
#' @param data The data.frame to summarise
#' @param split.col Name of the column used to split the dataset
#' @param stat.cols Names of the columns to summarise. If this vector is named
#' those names will be used in the output.
#' @param measure The measure to use for summarisation.
#'
#' @return data.frame with the summarised measure, scaled and ranked
#'
#' @importFrom stats aggregate
summariseStats <- function(data, split.col, stat.cols,
measure = c("MAD", "MAE", "RMSE")) {
measure <- match.arg(measure)
if (is.null(names(stat.cols))) {
names(stat.cols) <- stat.cols
}
switch (measure,
"MAD" = {
measure_fun <- function(x) {median(abs(x))}
},
"MAE" = {
measure_fun <- function(x) {mean(abs(x))}
},
"RMSE" = {
measure_fun <- function(x) {sqrt(mean(abs(x ^ 2)))}
}
)
summ <- aggregate(data[, stat.cols], list(Dataset = data[[split.col]]),
measure_fun)
colnames(summ) <- c(split.col, names(stat.cols))
tidy.summ <- tidyStatSumm(summ, measure)
return(tidy.summ)
}
#' Summarise KS
#'
#' Summarise columns of a data.frame compared to a reference using the KS test.
#'
#' @param data The data.frame to summarise
#' @param ref The reference data.frame
#' @param split.col Name of the column used to split the dataset
#' @param stat.cols Names of the columns to summarise. If this vector is named
#' those names will be used in the output.
#'
#' @return data.frame with the summarised measure, scaled and ranked
#' @importFrom stats ks.test
summariseKS <- function(data, ref, split.col, stat.cols) {
if (is.null(names(stat.cols))) {
names(stat.cols) <- stat.cols
}
splits <- unique(data[[split.col]])
summ <- expand.grid(Dataset = splits, Statistic = names(stat.cols),
stringsAsFactors = FALSE)
ks.res <- mapply(function(split, stat.name) {
stat <- stat.cols[stat.name]
if (!is.na(stat)) {
data.stat <- data[data[[split.col]] == split, stat]
ref.stat <- ref[[stat]]
ks <- suppressWarnings(ks.test(ref.stat, data.stat))
ks.out <- c(KS = unname(ks$statistic), KSPVal = ks$p.value)
} else {
ks.out <- c(KS = NA, KSPVal = NA)
}
return(ks.out)
}, summ$Dataset, summ$Statistic)
summ$KS <- ks.res["KS", ]
summ$KSPVal <- ks.res["KSPVal", ]
ks.ranks <- lapply(split(summ, summ$Statistic), function(x) {
rank(x$KS)
})
ks.ranks <- unlist(ks.ranks)
summ$KSRank <- ks.ranks
summ$KSRank[is.na(summ$KS)] <- NA
return(summ)
}
#' Tidy summarised statistics
#'
#' Convert a statistic summary to tidy format and add ranks and scaled values
#'
#' @param stat.summ The summary to convert
#' @param measure The name of the summarisation measure
#'
#' @return tidy data.frame with the summarised measure, scaled and ranked
tidyStatSumm <- function(stat.summ, measure = c("MAD", "MAE", "RMSE")) {
measure <- match.arg(measure)
summ.mat <- t(stat.summ[, -1])
colnames(summ.mat) <- stat.summ[, 1]
scale.summ <- apply(summ.mat, 1, scale)
# Check if apply has returned a vector
if (is.vector(scale.summ)) {
scale.summ <- t(as.matrix(scale.summ))
}
rank.summ <- apply(summ.mat, 1, rank)
if (is.vector(rank.summ)) {
rank.summ <- t(as.matrix(rank.summ))
}
tidy.summ <- as.data.frame.table(t(summ.mat))
colnames(tidy.summ) <- c("Dataset", "Statistic", measure)
tidy.scale <- as.data.frame.table(scale.summ)
tidy.rank <- as.data.frame.table(rank.summ)
tidy.summ[[paste0(measure, "Scaled")]] <- tidy.scale[, 3]
tidy.summ[[paste0(measure, "Rank")]] <- tidy.rank[, 3]
return(tidy.summ)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.