Description Usage Arguments Details Value References Examples
View source: R/sparseDC-simulate.R
Simulate counts from cluster in two conditions using the SparseDC method.
1 2 3 4 5 6 | sparseDCSimulate(
params = newSparseDCParams(),
sparsify = TRUE,
verbose = TRUE,
...
)
|
params |
SparseDCParams object containing simulation parameters. |
sparsify |
logical. Whether to automatically convert assays to sparse matrices if there will be a size reduction. |
verbose |
logical. Whether to print progress messages |
... |
any additional parameter settings to override what is provided in
|
This function is just a wrapper around
sim_data
that takes a
SparseDCParams
, runs the simulation then converts the
output from log-expression to counts and returns a
SingleCellExperiment
object. The original
simulated log-expression values are returned in the LogExprs
assay.
See sim_data
and the SparseDC paper for
more details about how the simulation works.
SingleCellExperiment containing simulated counts
Campbell K, Yau C. Uncovering genomic trajectories with heterogeneous genetic and environmental backgrounds across single-cells and populations. bioRxiv (2017).
Barron M, Zhang S, Li J. A sparse differential clustering algorithm for tracing cell type changes via single-cell RNA-sequencing data. Nucleic Acids Research (2017).
Paper: 10.1093/nar/gkx1113
1 2 3 | if (requireNamespace("SparseDC", quietly = TRUE)) {
sim <- sparseDCSimulate()
}
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.