R/glm-test.R

Defines functions snp.rhs.estimates snp.lhs.estimates .col.numbers snp.rhs.tests snp.lhs.tests glm.test.control

Documented in glm.test.control snp.lhs.estimates snp.lhs.tests snp.rhs.estimates snp.rhs.tests

# Set control parameters 

glm.test.control <-
function(maxit=20, epsilon=1.e-5, R2Max=0.99) 
  list(maxit=as.integer(maxit),
       epsilon=as.double(epsilon),
       R2Max=as.double(R2Max))

# Logit tests with snps on LHS */


snp.lhs.tests <-
  
function(snp.data, base.formula, add.formula, subset, snp.subset,
         data=sys.parent(), robust=FALSE, uncertain=FALSE,
         control=glm.test.control(),
         score=FALSE)
{   
  if (is(snp.data,"SnpMatrix")) 
    snames <- rownames(snp.data)
  else
    stop("snp.data must be stored as a SnpMatrix object")
  
  call <- match.call()
  temp <- c("", "base.formula", "subset", "data")
  m <- call[match(temp, names(call), nomatch=0)]
  data.missing <- is.null(m$data)
  special <- c("strata", "cluster")
  Terms <- terms(base.formula, special, data=data)

  # Separate intercept term from rest of model formula
  # Note as of now I ignore this and fit an intercept anyway!

  INTERCEPT <- attr(Terms, "intercept")
  if (!INTERCEPT) # put one back temporarily
    attr(Terms, "intercept") <- 1

  # Model frame for base model

  names(m)[2] <- "formula"
  m[[1]] <- as.name("model.frame")
  m[[2]] <- Terms
  m <- as.call(c(as.list(m), list(na.action=as.symbol("na.omit"))))
  m <- eval(m)
  bnames <- rownames(m)

  # Base model matrix -- minus any cluster or strata variables

  strats <- attr(Terms, "specials")$strata
  clust <- attr(Terms, "specials")$cluster
  dropx <- NULL
  if (!is.null(clust)) {
    # Some check on valid clusters?
    if (missing(robust))
      robust <- TRUE
    tempc <- untangle.specials(Terms, "cluster", 1)
    clust <- as.integer(cluster(m[, tempc$vars]))  # unused 'shortlabel=TRUE' was here - possibly a mistake
    dropx <- tempc$terms
  }
  if (!is.null(strats)) {
    temps <- untangle.specials(Terms, "strata", 1)
    strats <- as.integer(strata(m[, temps$vars], shortlabel=TRUE))
    dropx <- c(dropx, temps$terms)
  }

  if (length(dropx)) 
    newTerms <- Terms[-dropx]
  else
    newTerms <- Terms
  X <- model.matrix(newTerms, m)

  # Remove unit column vector
  
  ones <- match("(Intercept)", colnames(X), nomatch=0)
  if (ones)
    X <- X[,-ones, drop=FALSE]
  
  # Additional model matrix
  
  temp <- c("", "add.formula", "subset", "data")
  m <- call[match(temp, names(call), nomatch=0)]
  Terms <- terms(add.formula, data=data)
     
  names(m)[2] <- "formula"
  m[[1]] <- as.name("model.frame")
  m <- as.call(c(as.list(m), list(na.action=as.symbol("na.omit"))))
  m <- eval(m)
  anames <- rownames(m) 
  Z <- model.matrix(Terms, m)

  # If there is an intercept term in the model already, remove this from Z

  ones <- match("(Intercept)", colnames(Z), nomatch=0)
  if (ones)
    Z <- Z[,-ones, drop=FALSE]
 
  
  # Find common rows and mapping to line up  snp.data

  common <- intersect(anames, bnames)
  if (!data.missing) {
    common <- intersect(common, snames)
    ix <- match(common, bnames)
    iz <- match(common, anames)
    iy <- match(common, rownames(snp.data))
  }
  else {
    ix <- match(common, bnames)
    iz <- match(common, anames)
    iy <- as.numeric(common) # common will refer to row numbers in snp.data  
  }
  N <- as.integer(length(common))
  if (N==0)
    stop("no observations")
  else {
    snp.data <- snp.data[iy,]
    X <- X[ix,, drop=FALSE]
    if (!is.null(strats))
      strats <- strats[ix]
    if (!is.null(clust))
      clust <- clust[ix]
    Z <- Z[iz,, drop=FALSE]
  }

  if (missing(snp.subset)) {
    snp.subset <- NULL
  }
  else {
    if (is.character(snp.subset)) {
      snp.subset <- match(snp.subset, colnames(snp.data))
      if (any(is.na(snp.subset)))
        stop("unmatched snps in snp.subset argument")
    }
    else if (is.logical(snp.subset)){
      if (length(snp.subset)!=ncol(snp.data))
        stop("snp.subset element(s) out of range")
      snp.subset <- (1:ncol(snp.data))[snp.subset]
    }
    else if (is.integer(snp.subset)) {
      if (any(snp.subset<1 | snp.subset>ncol(snp.data)))
        stop("snp.subset element(s) out of range")
    }
    else 
      stop("illegal type for snp.subset")
  }
  .Call("snp_lhs_score",
        snp.data, X, strats, Z, snp.subset, robust, clust, uncertain,
        control, as.logical(score), PACKAGE="snpStats")
}

# GLM tests with SNPs on RHS

snp.rhs.tests <-
function(formula, family="binomial", link, weights, subset,
          data=parent.frame(), snp.data, rules=NULL, 
          tests=NULL, robust=FALSE, uncertain=FALSE, 
          control=glm.test.control(),
          allow.missing=0.01, score=FALSE) {
  
  call <- match.call()

  # Family and link function
  
  fam <- pmatch(tolower(family),
                c("binomial", "poisson", "gaussian", "gamma"))
  if (is.na(fam))
    stop("Unrecognized family argument")
  if (fam==0)
    stop("Ambiguous family argument")

  if (missing(link))
    lnk <- fam # Canonical link is default
  else {
    lnk <- pmatch(tolower(link), c("logit", "log", "identity", "inverse"))
    if (is.na(fam))
      stop("Unrecognized link argument")
    if (lnk==0)
      stop("Ambiguous link argument")
  }
  no.data <- missing(data)
  if (no.data) {
    data <- environment(formula)
  }
  temp <- c("", "formula", "data", "weights", "subset")
  m <- call[match(temp, names(call), nomatch=0)]
  special <- c("strata", "cluster")
    
  Terms <- if (no.data)
    terms(formula, special)
  else terms(formula, special, data=data)

  # Separate intercept term from rest of model formula

  INTERCEPT <- attr(Terms, "intercept")
  if (!INTERCEPT) # put one back temporarily
    attr(Terms, "intercept") <- 1

  # Model frame for null model

  m$formula <- Terms
  if (no.data)
    m$rows <- 1:nrow(snp.data)
  m[[1]] <- as.name("model.frame")
  m <- eval(m, parent.frame())
        
  # Find common rows and mapping to line up  snp.data

  if (is(snp.data, "SnpMatrix")) 
    snames <- rownames(snp.data)
  else
    stop("snp.data must be stored as a SnpMatrix")

  if (no.data) {
    map <- m[["(rows)"]]
  }
  else {
    mnames <- rownames(m)
    map <- match(mnames, snames, nomatch=0)
  }
  use <- map>0
  N <- sum(use)
  if (N==0)
    stop("no observations")
  

  # Response vector

  if(is.factor(m[[1]])){
    # This is just to avoid the warning that conversion
    # to numeric(=double) from factor is ignored.
    Y <- model.response(m, "any")
  } else {
    Y <- model.response(m, "numeric")
  }
  if (fam==1) { # Binomial family
    Y <- as.factor(Y)
    if (nlevels(Y)==2)
      Y <- as.numeric(Y)-1
    else
      stop("Response is not on two levels")
  }

  # Model matrix -- minus any cluster or strata variables

  strats <- attr(Terms, "specials")$strata
  clust <- attr(Terms, "specials")$cluster
  dropx <- NULL
  if (length(clust)) {
    # Some check on valid clusters?
    if (missing(robust))
      robust <- TRUE
    tempc <- untangle.specials(Terms, "cluster", 1)
    clust <- strata(m[, tempc$vars], shortlabel=TRUE)
    dropx <- tempc$terms
  }
  else
    clust <- NULL
  if (length(strats)) {
    temps <- untangle.specials(Terms, "strata", 1)
    strats <- strata(m[, temps$vars], shortlabel=TRUE)
    if (fam==1) {
      ## Check for saturated response
      levs <- levels(strats)
      for (s in 1:nlevels(strats)) {
        ins <- use & (as.numeric(strats)==s)
        if (all(Y[ins]==1)) {
          use[ins] <- FALSE
          warning("100 percent response in stratum ", levs[s],
                "; ", sum(ins), " observations dropped")
        } else if (all(Y[ins]==0)) {
          use[ins] <- FALSE
          warning("0 percent response in stratum ", levs[s],
                "; ", sum(ins), " observations dropped")
        }   
      }
    }
    dropx <- c(dropx, temps$terms)
  }
  else
    strats <- NULL

  if (length(dropx)) 
    newTerms <- Terms[-dropx]
  else
    newTerms <- Terms
  X <- model.matrix(newTerms, m)

  # Remove unit column vector
  
  ones <- match("(Intercept)", colnames(X), nomatch=0)
  if (ones)
    X <- X[, -ones, drop=FALSE]
  if (ncol(X) == 0)
    X <- NULL
  
  # Prior weights

  if (!is.null(model.weights(m))) {
    cat("One\n")
    weights <- model.weights(m)
    if (any(weights<0))
      stop("negative prior weights not allowed")
  }
  else
    weights <- NULL

  # Offsets

  offset <- model.offset(m)
  if(!is.null(offset)) {
    offset <- offset
    stop("Can't deal with offsets at the moment")
  }

  # Sort and reshape arrays if necessary

  if (!all(use)) {
    Y <- Y[use]
    if (!is.null(X))
      X <- X[use,,drop=FALSE]
    if (!is.null(weights))
      weights <- weights[use]
    if (!is.null(strats))
      strats <- strats[use]
    if (!is.null(clust))
      clust <- clust[use]
    map <- map[use]
    snp.data <- snp.data[map,]
  }
  else if (any(map != 1:N))
    snp.data <- snp.data[map,]
    
  # Imputation

  if (!is.null(rules) && class(rules)!="ImputationRules")
    stop("illegal class for `rules' argument")


  # Coerce tests argument to correct form #

  if(is.null(tests)) {
    if (is.null(rules)) {
      tests <- as.integer(1:ncol(snp.data))
    }
    else {
      tests <- as.integer(-(1:length(rules)))
    }
  }
  else if (is.logical(tests)) {
    tests <- as.integer(1:ncol(snp.data))[tests]
  }    
  else if (is.character(tests)) {
    tests <- .col.numbers(tests, colnames(snp.data), names(rules))
  }
  else if (is.numeric(tests)) {
    tests <- as.integer(tests)
  }
  else if(is.list(tests)) {
    tests <- lapply(tests, .col.numbers, colnames(snp.data), names(rules))
  } else {
    stop("illegal tests argument")
  }

  .Call("snp_rhs_score", Y, fam, lnk, X, strats, snp.data, rules,
        weights, tests, robust, clust, uncertain, control, allow.missing,
        as.logical(score),
        PACKAGE="snpStats")
}  

# Private utility function to 
# match character array  to list of (first) names
# or (optionally) to second names if that fails
  
.col.numbers <- function(inc, first.names, second.names=NULL) {
  if (is.character(inc)) {
    res <- match(inc, first.names, nomatch=NA)
    missing <- is.na(res)
    if (any(missing)) {
      if (!is.null(second.names)) {
        res[missing] <- - match(inc[missing], second.names, nomatch=NA)
        missing <- is.na(res)
        if (any(missing)) {
          warning("Unmatched SNP names in tests argument")
          res <- res[!missing]
        }
      } else {
        warning("Unmatched SNP names in tests argument")
        res <- res[!missing]
      }
    }
  }
  else if (is.numeric(inc)) {
    res <- inc
  }
  else stop("Illegal multiple SNP test definition")
  
  as.integer(res)
}

## Estimation functions

## SNP on LHS  of equation


snp.lhs.estimates <-
  
function(snp.data, base.formula, add.formula, subset, snp.subset,
         data=sys.parent(), robust=FALSE, uncertain=FALSE,
         control=glm.test.control())
{   
  if (is(snp.data,"SnpMatrix")) 
    snames <- rownames(snp.data)
  else
    stop("snp.data must be stored as a SnpMatrix object")
  
  call <- match.call()
  temp <- c("", "base.formula", "subset", "data")
  m <- call[match(temp, names(call), nomatch=0)]
  data.missing <- is.null(m$data)
  special <- c("strata", "cluster")
  Terms <- terms(base.formula, special, data=data)

  # Separate intercept term from rest of model formula
  # Note as of now I ignore this and fit an intercept anyway!

  INTERCEPT <- attr(Terms, "intercept")
  if (!INTERCEPT) # put one back temporarily
    attr(Terms, "intercept") <- 1

  # Model frame for base model

  names(m)[2] <- "formula"
  m[[1]] <- as.name("model.frame")
  m[[2]] <- Terms
  m <- as.call(c(as.list(m), list(na.action=as.symbol("na.omit"))))
  m <- eval(m)
  bnames <- rownames(m)
 
  # Base model matrix -- minus any cluster or strata variables

  strats <- attr(Terms, "specials")$strata
  clust <- attr(Terms, "specials")$cluster
  dropx <- NULL
  if (!is.null(clust)) {
    # Some check on valid clusters?
    if (missing(robust))
      robust <- TRUE
    tempc <- untangle.specials(Terms, "cluster", 1)
    clust <- as.integer(cluster(m[, tempc$vars]))  # unused 'shortlabel=TRUE' was here - possibly a mistake
    dropx <- tempc$terms
  }
  if (!is.null(strats)) {
    temps <- untangle.specials(Terms, "strata", 1)
    strats <- as.integer(strata(m[, temps$vars], shortlabel=TRUE))
    dropx <- c(dropx, temps$terms)
  }

  if (length(dropx)) 
    newTerms <- Terms[-dropx]
  else
    newTerms <- Terms
  X <- model.matrix(newTerms, m)

  # Remove unit column vector
  
  ones <- match("(Intercept)", colnames(X), nomatch=0)
  if (ones)
    X <- X[,-ones, drop=FALSE]
  
  # Additional model matrix
  
  temp <- c("", "add.formula", "subset", "data")
  m <- call[match(temp, names(call), nomatch=0)]
  Terms <- terms(add.formula, data=data)
     
  names(m)[2] <- "formula"
  m[[1]] <- as.name("model.frame")
  m <- as.call(c(as.list(m), list(na.action=as.symbol("na.omit"))))
  m <- eval(m)
  anames <- rownames(m) 
  Z <- model.matrix(Terms, m)

  # If there is an intercept term in the model already, remove this from Z

  ones <- match("(Intercept)", colnames(Z), nomatch=0)
  if (ones)
    Z <- Z[,-ones, drop=FALSE]
 
  
  # Find common rows and mapping to line up  snp.data

  common <- intersect(anames, bnames)
  if (!data.missing) {
    common <- intersect(common, snames)
    ix <- match(common, bnames)
    iz <- match(common, anames)
    iy <- match(common, rownames(snp.data))
  }
  else {
    ix <- match(common, bnames)
    iz <- match(common, anames)
    iy <- as.numeric(common) # common will refer to row numbers in snp.data  
  }
  N <- as.integer(length(common))
  if (N==0)
    stop("no observations")
  else {
    snp.data <- snp.data[iy,]
    X <- X[ix,, drop=FALSE]
    if (!is.null(strats))
      strats <- strats[ix]
    if (!is.null(clust))
      clust <- clust[ix]
    Z <- Z[iz,, drop=FALSE]
  }

  if (missing(snp.subset)) {
    snp.subset <- NULL
  }
  else {
    if (is.character(snp.subset)) {
      snp.subset <- match(snp.subset, colnames(snp.data))
      if (any(is.na(snp.subset)))
        stop("unmatched snps in snp.subset argument")
    }
    else if (is.logical(snp.subset)){
      if (length(snp.subset)!=ncol(snp.data))
        stop("snp.subset element(s) out of range")
      snp.subset <- (1:ncol(snp.data))[snp.subset]
    }
    else if (is.integer(snp.subset)) {
      if (any(snp.subset<1 | snp.subset>ncol(snp.data)))
        stop("snp.subset element(s) out of range")
    }
    else 
      stop("illegal type for snp.subset")
  }
  .Call("snp_lhs_estimate",
        snp.data, cbind(X, Z), strats, snp.subset, ncol(Z), robust, clust,
        uncertain, control, PACKAGE="snpStats")
}
  
## SNP on RHS of equation

snp.rhs.estimates <-
  
function(formula, family="binomial", link, weights, subset,
        data=parent.frame(), snp.data, rules=NULL, sets=NULL, robust=FALSE, uncertain=FALSE,
        control=glm.test.control()) {
  
  call <- match.call()

  # Family and link function
  
  fam <- pmatch(tolower(family),
                c("binomial", "poisson", "gaussian", "gamma"))
  if (is.na(fam))
    stop("Unrecognized family argument")
  if (fam==0)
    stop("Ambiguous family argument")

  if (missing(link))
    lnk <- fam # Canonical link is default
  else {
    lnk <- pmatch(tolower(link), c("logit", "log", "identity", "inverse"))
    if (is.na(fam))
      stop("Unrecognized link argument")
    if (lnk==0)
      stop("Ambiguous link argument")
  }
  no.data <- missing(data)
  if (no.data) {
    data <- environment(formula)
  }
  temp <- c("", "formula", "data", "weights", "subset")
  m <- call[match(temp, names(call), nomatch=0)]
  special <- c("strata", "cluster")
    
  Terms <- if (no.data)
    terms(formula, special)
  else terms(formula, special, data=data)

  # Separate intercept term from rest of model formula

  INTERCEPT <- attr(Terms, "intercept")
  if (!INTERCEPT) # put one back temporarily
    attr(Terms, "intercept") <- 1

  # Model frame for null model

  m$formula <- Terms
  if (no.data)
    m$rows <- 1:nrow(snp.data)
  m[[1]] <- as.name("model.frame")
  m <- eval(m, parent.frame())
        
  # Find common rows and mapping to line up  snp.data

  if (is(snp.data, "SnpMatrix")) 
    snames <- rownames(snp.data)
  else
    stop("snp.data must be stored as a SnpMatrix")

  if (no.data) {
    map <- m[["(rows)"]]
  }
  else {
    mnames <- rownames(m)
    map <- match(mnames, snames, nomatch=0)
  }
  use <- map>0
  N <- sum(use)
  if (N==0)
    stop("no observations")
  

  # Response vector

  if(is.factor(m[[1]])){
    # This is just to avoid the warning that conversion
    # to numeric(=double) from factor is ignored.
    Y <- model.response(m, "any")
  } else {
    Y <- model.response(m, "numeric")
  }
  if (fam==1) { # Binomial family
    Y <- as.factor(Y)
    if (nlevels(Y)==2)
      Y <- as.numeric(Y)-1
    else
      stop("Response is not on two levels")
  }
  Yname <- as.character(Terms, "variables")[[2]]

  # Model matrix -- minus any cluster or strata variables

  strats <- attr(Terms, "specials")$strata
  clust <- attr(Terms, "specials")$cluster
  dropx <- NULL
  if (length(clust)) {
    # Some check on valid clusters?
    if (missing(robust))
      robust <- TRUE
    tempc <- untangle.specials(Terms, "cluster", 1)
    clust <- strata(m[, tempc$vars], shortlabel=TRUE)
    dropx <- tempc$terms
  }
  else
    clust <- NULL
  if (length(strats)) {
    temps <- untangle.specials(Terms, "strata", 1)
    strats <- strata(m[, temps$vars], shortlabel=TRUE)
    dropx <- c(dropx, temps$terms)
  }
  else
    strats <- NULL

  if (length(dropx)) 
    newTerms <- Terms[-dropx]
  else
    newTerms <- Terms
  X <- model.matrix(newTerms, m)

  # Remove unit column vector
  
  ones <- match("(Intercept)", colnames(X), nomatch=0)
  if (ones)
    X <- X[, -ones, drop=FALSE]
  if (ncol(X) == 0)
    X <- NULL

  # Prior weights

  if (!is.null(model.weights(m))) {
    cat("One\n")
    weights <- model.weights(m)
    if (any(weights<0))
      stop("negative prior weights not allowed")
  }
  else
    weights <- NULL

  # Offsets

  offset <- model.offset(m)
  if(!is.null(offset)) {
    offset <- offset
    stop("Can't deal with offsets at the moment")
  }

  # Sort and reshape arrays if necessary

  if (N != length(use)) {
    Y <- Y[use]
    if (!is.null(X))
      X <- X[use,,drop=FALSE]
    if (!is.null(weights))
      weights <- weights[use]
    if (!is.null(strats))
      strats <- strats[use]
    if (!is.null(clust))
      clust <- clust[use]
    snp.data <- snp.data[map,]
  }
  else if (any(map != 1:N))
    snp.data <- snp.data[map,]
    
  
  # Coerce sets argument to correct form #

  if(is.null(sets)) {
    if (is.null(rules))
      sets <- as.integer(1:ncol(snp.data))
    else
      sets <- as.integer(-(1:length(rules)))
  }
  else if (is.logical(sets)) {
    sets <- as.integer(1:ncol(snp.data))[sets]
  }
  else if (is.character(sets)) {
    sets <- .col.numbers(sets, colnames(snp.data), names(rules))
  }
  else if (is.numeric(sets)) {
    sets <- as.integer(sets)
  }
  else if(is.list(sets)) {
    sets <- lapply(sets, .col.numbers, colnames(snp.data), names(rules))
  } else {
    stop("illegal sets argument")
  }
  attr(Y, "label") <- Yname
  .Call("snp_rhs_estimate", Y, fam, lnk, X, strats, snp.data, rules, 
        weights, sets, robust, clust, uncertain, control, PACKAGE="snpStats")
}  

  

Try the snpStats package in your browser

Any scripts or data that you put into this service are public.

snpStats documentation built on Nov. 8, 2020, 10:59 p.m.