Nothing
#' Functional modules of GESS and FEA results can be rendered as interactive
#' drug-target networks using the \code{dtnetplot} function form
#' \code{signatureSearch}. For this, a character vector of drug names along
#' with an identifier of a chosen functional category are passed on to the
#' drugs and set arguments, respectively. The resulting plot depicts the
#' corresponding drug-target interaction network. Its interactive features
#' allow the user to zoom in and out of the network, and to select network
#' components in the drop-down menu located in the upper left corner of the
#' plot.
#' @title Drug-Target Network Visualization
#' @param drugs A character vector of drug names
#' @param set character(1) GO term ID, KEGG or Reactome pathway ID.
#' Alternatively, a character vector of gene SYMBOLs can be assigned.
#' @param ont if `set` is a GO term ID, `ont` is the corresponding ontology
#' that GO term belongs to. One of 'BP', 'MF' or 'CC'. If `set` is anything else,
#' `ont` is ignored.
#' @param desc character(1), description of the chosen functional category or
#' target set
#' @param verbose TRUE or FALSE, whether to print messages
#' @param ... Other arguments passed on to
#' \code{\link[visNetwork]{visNetwork}} function.
#' @return visNetwork plot and a list of drugs and targets that have interactions
#' @import visNetwork
#' @importFrom AnnotationDbi select
#' @importFrom scales cscale
#' @importFrom scales seq_gradient_pal
#' @examples
#' data(drugs10)
#' dtnetplot(drugs=drugs10,
#' set=c("HDAC1", "HDAC2", "HDAC3", "HDAC11", "FOX2"),
#' desc="NAD-dependent histone deacetylase activity (H3-K14 specific)")
#' @export dtnetplot
#'
dtnetplot <- function(drugs, set, ont=NULL, desc=NULL, verbose=FALSE, ...) {
if(grepl("GO:\\d{7}",set)[1]){
ont %<>% toupper
if(is.null(ont) | !any(ont %in% c("BP","MF","CC")))
stop("The 'set' is a GO term ID, please set 'ont' as one of
'MF', 'BP' or 'CC'")
# download goAnno.rds and save it to cache
eh <- suppressMessages(ExperimentHub())
goAnno <- suppressMessages(eh[["EH3229"]])
go_gene <- unique(goAnno$SYMBOL[goAnno$ONTOLOGYALL == ont &
goAnno$GOALL == set])
} else if(length(set) > 1){
go_gene <- set
} else {
if(grepl("hsa\\d{5}",set)[1]){
KEGG_DATA <- prepare_KEGG(species="hsa", "KEGG", keyType="kegg")
p2e <- get("PATHID2EXTID", envir=KEGG_DATA)
}
if(grepl("R-HSA",set)[1]){
Reactome_DATA <- get_Reactome_DATA(organism="human")
p2e <- get("PATHID2EXTID", envir=Reactome_DATA)
}
go_gene_entrez = p2e[[set]]
# convert Entrez ids in KEGG pathways to gene SYMBOL
OrgDb <- load_OrgDb("org.Hs.eg.db")
go_gene_map <- suppressMessages(AnnotationDbi::select(
OrgDb, keys = go_gene_entrez, keytype = "ENTREZID", columns="SYMBOL"))
go_gene <- unique(go_gene_map$SYMBOL)
}
# get drug targets in DrugBank, STITCH, LINCS and calculate targets weight
dtslash <- get_targets(drugs, database="all")
dtlink <- slash2link(dtslash)
dtlink_go <- dtlink[dtlink$t_gn_sym %in% go_gene,]
go_gene_nottar <- setdiff(go_gene, unique(dtlink$t_gn_sym))
go_gene_tar <- intersect(go_gene, unique(dtlink$t_gn_sym))
if(verbose){
message(length(go_gene_tar), "/", length(go_gene), " (",
round(length(go_gene_tar)/length(go_gene)*100,2),
"%) genes in the gene set are targeted by query drugs, which are ",
paste0(go_gene_tar, collapse = " / "), "\n")
if(length(go_gene_nottar>0)){
message(length(go_gene_nottar), "/", length(go_gene), " (",
round(length(go_gene_nottar)/length(go_gene)*100,2),
"%) genes in the gene set are not targeted by query drugs, ",
"which are ", paste0(go_gene_nottar, collapse = " / "), "\n")
}
}
drugs_tar <- unique(dtlink_go$drug_name)
drugs_no <- setdiff(drugs, drugs_tar)
if(verbose){
message(length(drugs_tar), "/", length(drugs), " (",
round(length(drugs_tar)/length(drugs)*100,2),
"%) drugs target genes/proteins in the gene set. They are ",
paste0(drugs_tar, collapse = " / "), "\n")
if(length(drugs_no>0)){
message(length(drugs_no), "/", length(drugs), " (",
round(length(drugs_no)/length(drugs)*100,2),
"%) drugs don't target genes/proteins in the gene set. They are ",
paste0(drugs_no, collapse = " / "), "\n")
}
}
## scale node colors based on targetWeight and drugWeight(dw)
tw <- table(dtlink_go$t_gn_sym)
tw_vec <- as.numeric(tw); names(tw_vec) <- names(tw)
tw_vec0 <- rep(0, length(go_gene_nottar))
names(tw_vec0) <- go_gene_nottar
targetWeight <- c(tw_vec, tw_vec0)
col.scale_tar <- cscale(targetWeight, seq_gradient_pal("#B3B3B3","#FF5C32"))
dw <- table(dtlink_go$drug_name)
dw_vec <- as.numeric(dw); names(dw_vec) <- names(dw)
col.scale_drug <- cscale(dw_vec, seq_gradient_pal("#ffd07aff", "orange"))
# Use visNetwork to plot
lnodes <- data.frame(label = c("drugs", "targets"),
shape = c("box", "circle"),
color = c("orange", "#FF5C32"),
title = "Groups", id = seq_len(2))
nodes <- data.frame(id = c(drugs_tar, go_gene), label = c(drugs_tar, go_gene),
group = c(rep("drugs", length(drugs_tar)),
rep("targets", length(go_gene))),
shape = c(rep("box", length(drugs_tar)),
rep("circle", length(go_gene))),
color = c(col.scale_drug[drugs_tar],
col.scale_tar[go_gene]),
value = c(5*table(dtlink_go$drug_name),
rep(5, length(go_gene))))
edges <- dtlink_go; colnames(edges) = c("from", "to")
visNetwork(nodes, edges, width = "100%", ...) %>%
visLegend(width = 0.05, position = "right", addNodes = lnodes,
useGroups = FALSE) %>%
visOptions(highlightNearest=list(enabled=TRUE, degree=1, hover=TRUE),
nodesIdSelection = TRUE)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.