R/ziber.R

Defines functions fast_estimate_ziber impute_null impute_expectation estimate_ziber .pzfn .likfn

Documented in estimate_ziber fast_estimate_ziber impute_expectation impute_null

#
#' Likelihood Function of the Logistic Model
#' 
#' @keywords internal
#'   
#' @param Z data matrix
#' @param X sample-level values
#' @param Beta gene-level values
#'   
.likfn = function(Z,X,Beta){
  return((1-Z) + (2*Z - 1)/(1+exp(-X %*% Beta)))
}

#
#' Posterior probability of detection
#' 
#' @keywords internal
#' 
#' @param Y detection matrix.
#' @param W sample-level drop-out coefficients.
#' @param Alpha gene-level drop-out features.
#' @param X sample-level expression features.
#' @param Beta gene-level sample coefficients.
#' 
.pzfn = function(Y,W,Alpha,X,Beta){
  
  matA = .likfn(1,X,Beta) # Expression
  matB = matA*.likfn(Y,W,Alpha) # Failure
  
  o = matB/(matB + (Y == 0)*(1-matA))
  o[Y > 0] = 1
    
  return(o)
}


#' Parameter estimation of zero-inflated bernoulli model
#' 
#' This function implements an expectation-maximization algorithm for a 
#' zero-inflated bernoulli model of transcript detection, modeling gene 
#' expression state (off of on) as a bernoulli draw on a gene-specific 
#' expression rate (Z in {0,1}). Detection conditioned on expression is a 
#' logistic function of gene-level features. The bernoulli model is modeled 
#' numerically by a logistic model with an intercept.
#' 
#' @param x matrix. An expression data matrix (genes in rows, cells in columns)
#' @param fp_tresh numeric. Threshold for calling a positive detection (D = 1).
#'   Default 0.
#' @param gfeatM matrix. Numeric gene level determinants of drop-out (genes in 
#'   rows, features in columns)
#' @param bulk_model logical. Use median log-expression of gene in detected 
#'   fraction as sole gene-level feature. Default FALSE. Ignored if gfeatM is 
#'   specified.
#' @param pos_controls logical. TRUE for all genes that are known to be 
#'   expressed in all cells.
#' @param em_tol numeric. Convergence treshold on log-likelihood.
#' @param maxiter numeric. The maximum number of iterations. Default 100.
#' @param verbose logical. Whether or not to print the value of the likelihood 
#'   at each iteration.
#'   
#' @export
#' 
#' @return a list with the following elements: \itemize{ \item{W}{ coefficients
#'   of sample-specific logistic drop-out model } \item{Alpha}{ intercept and 
#'   gene-level parameter matrix } \item{X}{ intercept } \item{Beta}{ 
#'   coefficient of gene-specific logistic expression model } 
#'   \item{fnr_character}{ the probability, per gene, of P(D=0|E=1)} 
#'   \item{p_nodrop}{ 1 - the probability P(drop|Y), useful as weights in 
#'   weighted PCA} \item{expected_state}{ the expected
#'   value E[Z] (1 = "on")} \item{loglik}{ the log-likelihood} 
#'   \item{convergence}{ 0 if the algorithm converged and 1 if maxiter was 
#'   reached} }
#'   
#' @examples
#' mat <- matrix(rpois(1000, lambda = 3), ncol=10)
#' mat = mat * matrix(1-rbinom(1000, size = 1, prob = .01), ncol=10)
#' ziber_out = suppressWarnings(estimate_ziber(mat,
#'    bulk_model = TRUE,
#'    pos_controls = 1:10))
#' 

estimate_ziber = function(x, fp_tresh = 0, 
                          gfeatM = NULL, bulk_model = FALSE, 
                          pos_controls = NULL,
                          em_tol = 0.01, maxiter = 100,
                          verbose = FALSE){
  
  Y = t(matrix(as.numeric( x > fp_tresh ),nrow = dim(x)[1]))
  
  if(is.null(gfeatM) & bulk_model){
    x2 = x
    x2[x2 <= fp_tresh] = NA
    Alpha = t(matrix(log(rowMedians(x2, na.rm=TRUE))))
  }else{
    if(is.null(gfeatM)){
      stop("No gene-level features specified")
    }
    Alpha = t(gfeatM)
  }
  
  # Prepare Gene-Intrinsic Intercept
  X = matrix(1,dim(x)[2],1)
  Beta = matrix(0,1,dim(x)[1])
  
  # Prepare Unwanted Variation and Sample-Intrinsic Intercept
  Alpha = rbind(Alpha,rep(1,dim(x)[1]))
  K = dim(Alpha)[1]
  W = matrix(0,dim(x)[2],K)
  
  # Initialize Z
  Z = .pzfn(Y,W,Alpha,X,Beta)
  
  if(is.null(pos_controls)){
    stop("Must supply positive controls genes to fit FNR characteristic")
  }
    
  # Fit W once using control genes
  cY = Y[,pos_controls]
  cAlpha = Alpha[,pos_controls]
  glm_pval = rep(NA,nrow(Z))
  
  for (i in 1:dim(Z)[1]){
    fit = suppressWarnings(glm(cbind(cY[i,],1-cY[i,]) ~ 0 +
                                 t(cAlpha),family=binomial(logit)))
    glm_pval[i] = summary(fit)$coef[,4][1]
    
    if((glm_pval[i] < .01) & fit$converged){
      W[i,] = fit$coefficients
    } else {
      if(!fit$converged){
        warning(paste0("Sample ",i," failed GLM fit, applying",
                       " expression independent model."))
      }else{
        warning(paste0("Sample ",i," exhibits expression dependence",
                       " consistent with null, applying expression ",
                       "independent model."))
      }
      
      # Only intercept with pseudocounts
      W[i,] = c(0,log((sum(cY[i,]) + 0.5)/(ncol(cY) + 1)) -
                  log((sum(1-cY[i,]) + 
                         0.5)/(ncol(cY) + 1))) 
    }
  } 
  Beta[,pos_controls] = NA
  Z[,pos_controls] = 1
  
  matA = .likfn(1,X,Beta[,!pos_controls]) # Expression
  matC = .likfn(Y[,!pos_controls],W,Alpha[,!pos_controls]) # Detection
  
  is_perfect = (matC == 0) | (matA == 0) | (matA == 1)
  
  EL2 = sum((Z[,!pos_controls]*log( matC ))[!is_perfect],na.rm = FALSE) + 
    sum((Z[,!pos_controls]*log( matA ))[!is_perfect],na.rm = FALSE) + 
    sum(((1-Z[,!pos_controls])*log( 1 - matA ))[!is_perfect],na.rm = FALSE)
  
  if(verbose){print(EL2)}
  
  EL1 = 2*EL2
  
  niter = 1
  while( is.infinite(EL1) | (EL2 - EL1) > em_tol ) {   
    
    EL1 = EL2
    
    # Update Beta
    cmz = colMeans(Z[,!pos_controls])
    Beta[,!pos_controls] = t(matrix(log(cmz) - log(1-cmz)))
    
    # Update Z
    Z[,!pos_controls] = .pzfn(Y[,!pos_controls],
                              W,Alpha[,!pos_controls],
                              X,Beta[,!pos_controls])
    
    matA = .likfn(1,X,Beta[,!pos_controls])
    matC = .likfn(Y[,!pos_controls],W,Alpha[,!pos_controls])
    
    is_perfect = (matC == 0) | (matA == 0) | (matA == 1)

    EL2 = sum((Z[,!pos_controls]*log( matC ))[!is_perfect],na.rm = FALSE) + 
      sum((Z[,!pos_controls]*log( matA ))[!is_perfect],na.rm = FALSE) + 
      sum(((1-Z[,!pos_controls])*log( 1 - matA ))[!is_perfect],na.rm = FALSE)
    
    if(verbose){print(EL2)}
    niter = niter + 1
    if(niter >= maxiter){
      return(list(W = W, X = X, Alpha = Alpha, Beta = Beta,
                  fnr_character = t(.likfn(1,W,Alpha)),
                  p_nodrop = 1 - t((Y <= fp_tresh)*Z), 
                  expected_state = t(Z), loglik = EL2,
                  convergence = 1,glm_pval = glm_pval))    }
  }

  return(list(W = W, X = X, Alpha = Alpha, Beta = Beta,
              fnr_character = t(.likfn(1,W,Alpha)),
              p_nodrop = 1 - t((Y <= fp_tresh)*Z), 
              expected_state = t(Z), loglik = EL2,
              convergence = 0, glm_pval = glm_pval))
}

#' Imputation of zero abundance based on general zero-inflated model
#' 
#' This function is used to impute the data, weighted by probability of data
#' coming from the zero-inflation part of the distribution.
#' 
#' @details The imputation is carried out with the following formula: 
#'   y_{ij}* = y_{ij} * Pr( No Drop | y_{ij}) + mu_{i} * Pr( Drop | y_{ij}).
#'   
#'   impute_args must contain 2 elements: 1) p_nodrop = posterior probability
#'   of data not having resulted from drop-out  (genes in rows, cells in
#'   columns) 2) mu = expected expression of dropped data (genes in rows, cells
#'   in columns)
#'   
#' @export
#' 
#' @param expression the data matrix (genes in rows, cells in columns)
#' @param impute_args arguments for imputation (see details)
#'   
#' @return the imputed expression matrix.
#'   
#' @examples
#' mat <- matrix(rpois(1000, lambda = 3), ncol=10)
#' mat = mat * matrix(1-rbinom(1000, size = 1, prob = .01), ncol=10)
#' 
#' mu = matrix(rep(3/ppois(0,lambda = 3,lower.tail = FALSE),1000),ncol = 10)
#' 
#' p_false = 1 / ( 1 + ppois(0, lambda = 3, lower.tail = TRUE ) / 
#'     (0.01 * ppois(0, lambda = 3, lower.tail = FALSE) ) )
#' 
#' p_nodrop = matrix(rep(1-p_false,1000),ncol = 10)
#' p_nodrop[mat > 0] = 1
#' 
#' impute_args = list()
#' impute_args = list(mu = mu, p_nodrop = p_nodrop)
#' 
#' imat = impute_expectation(mat,impute_args = impute_args)
#' 

impute_expectation <- function(expression,impute_args) {
  imputed <- expression * impute_args$p_nodrop +
    impute_args$mu * (1 - impute_args$p_nodrop)
  return(imputed)
}

#' Null or no-op imputation
#' 
#' @export
#' 
#' @param expression the data matrix (genes in rows, cells in columns)
#' @param impute_args arguments for imputation (not used)
#'   
#' @return the imputed expression matrix.
#'   
#' @examples
#' mat <- matrix(rpois(1000, lambda = 5), ncol=10)
#' imat = impute_null(mat)
#' 

impute_null <- function(expression,impute_args) {
  return(expression)
}

#' Fast parameter estimation of zero-inflated bernoulli model
#' 
#' This function implements Newton's method for solving zero of 
#' Expectation-Maximization equation at the limit of parameter convergence: a 
#' zero-inflated bernoulli model of transcript detection, modeling gene 
#' expression state (off of on) as a bernoulli draw on a gene-specific 
#' expression rate (Z in {0,1}). Detection conditioned on expression is a 
#' logistic function of gene-level features. The bernoulli model is modeled 
#' numerically by a logistic model with an intercept.
#' 
#' @param x matrix. An expression data matrix (genes in rows, cells in columns)
#' @param fp_tresh numeric. Threshold for calling a positive detection (D = 1).
#'   Default 0.
#' @param gfeatM matrix. Numeric gene level determinants of drop-out (genes in 
#'   rows, features in columns)
#' @param bulk_model logical. Use median log-expression of gene in detected 
#'   fraction as sole gene-level feature. Default FALSE. Ignored if gfeatM is 
#'   specified.
#' @param pos_controls logical. TRUE for all genes that are known to be 
#'   expressed in all cells.
#' @param rate_tol numeric. Convergence treshold on expression rates (0-1).
#' @param maxiter numeric. The maximum number of steps per gene. Default
#'   100.
#' @param verbose logical. Whether or not to print the value of the likelihood 
#'   at each iteration.
#'   
#' @export
#' 
#' @return a list with the following elements: \itemize{ \item{W}{ coefficients
#'   of sample-specific logistic drop-out model } \item{Alpha}{ intercept and 
#'   gene-level parameter matrix } \item{X}{ intercept } \item{Beta}{ 
#'   coefficient of gene-specific logistic expression model } 
#'   \item{fnr_character}{ the probability, per gene, of P(D=0|E=1)} 
#'   \item{p_nodrop}{ 1 - the probability P(drop|Y), useful as weights in 
#'   weighted PCA} \item{expected_state}{ the expected
#'   value E[Z] (1 = "on")} \item{loglik}{ the log-likelihood} 
#'   \item{convergence}{for all genes, 0 if the algorithm converged and
#'   1 if maxiter was reached} }
#'   
#' @examples
#' mat <- matrix(rpois(1000, lambda = 3), ncol=10)
#' mat = mat * matrix(1-rbinom(1000, size = 1, prob = .01), ncol=10)
#' ziber_out = suppressWarnings(fast_estimate_ziber(mat,
#'    bulk_model = TRUE,
#'    pos_controls = 1:10))
#' 

fast_estimate_ziber = function(x, fp_tresh = 0, 
                               gfeatM = NULL, bulk_model = FALSE, 
                               pos_controls = NULL,
                               rate_tol = 0.01, maxiter = 100,
                               verbose = FALSE){
  
  Y = t(matrix(as.numeric( x > fp_tresh ),nrow = dim(x)[1]))
  
  if(is.null(gfeatM) & bulk_model){
    x2 = x
    x2[x2 <= fp_tresh] = NA
    Alpha = t(matrix(log(rowMedians(x2, na.rm=TRUE))))
  }else{
    if(is.null(gfeatM)){
      stop("No gene-level features specified")
    }
    Alpha = t(gfeatM)
  }
  
  # Prepare Unwanted Variation and Sample-Intrinsic Intercept
  Alpha = rbind(Alpha,rep(1,dim(x)[1]))
  K = dim(Alpha)[1]
  W = matrix(0,dim(x)[2],K)
  
  if(is.null(pos_controls)){
    stop("Must supply positive controls genes to fit FNR characteristic")
  }
  
  # Fit W once using control genes
  cY = Y[,pos_controls]
  cAlpha = Alpha[,pos_controls]
  glm_pval = rep(NA,nrow(Y))
  
  for (i in 1:nrow(Y)){
    
    fit = suppressWarnings(glm(cbind(cY[i,],1-cY[i,]) ~ 0 +
                                 t(cAlpha),family=binomial(logit)))
    glm_pval[i] = summary(fit)$coef[,4][1]
    
    if((glm_pval[i] < .01) & fit$converged){
      W[i,] = fit$coefficients
    } else {
      if(!fit$converged){
        warning(paste0("Sample ",i," failed GLM fit, applying",
                       " expression independent model."))
      }else{
        warning(paste0("Sample ",i," exhibits expression dependence",
                       " consistent with null, applying expression ",
                       "independent model."))
      }
      
      # Only intercept with pseudocounts
      W[i,] = c(0,log((sum(cY[i,]) + 0.5)/(ncol(cY) + 1)) -
                  log((sum(1-cY[i,]) + 
                         0.5)/(ncol(cY) + 1))) 
    }
  }
  
  fnr_character = .likfn(1,W,Alpha)
  
  f_fun = function(x,y,theta){
    x - mean(1/(1+(1-y)*((1/x - 1)/theta)))
  }
  df_fun = function(x,y,theta){
    1 - mean((theta - y*theta)/(1 + y*(-1 + x) + (-1 + theta)*x)^2)
  }
  
  rates = rep(0.5,ncol(fnr_character))
  rates[pos_controls] = 1
  convergences = rep(0,ncol(fnr_character))
  convergences[pos_controls] = NA
  for(i in which(!pos_controls)){
    rate_est = rates[i]
    y = Y[,i]
    theta = 1 - fnr_character[,i]
    dr = -f_fun(rate_est,y,theta)/df_fun(rate_est,y,theta)
    niter = 0
    while(abs(dr) > rate_tol){
      niter = niter + 1
      rate_est = rate_est + dr
      dr = -f_fun(rate_est,y,theta)/df_fun(rate_est,y,theta)
      if(niter >= maxiter){
        convergences[i] = 1
        break
      }
    }
    rates[i] = rate_est
  }
  
  # Prepare Gene-Intrinsic Intercept
  X = matrix(1,dim(x)[2],1)
  Beta = matrix(boot::logit(rates),1,dim(x)[1])
  
  # Expression States
  Z = Y*0
  Z[,pos_controls] = 1
  Z[,!pos_controls] = .pzfn(Y[,!pos_controls],
                            W,Alpha[,!pos_controls],
                            X,Beta[,!pos_controls])
  
  # Likelihood
  matA = .likfn(1,X,Beta[,!pos_controls]) # Expression
  matC = .likfn(Y[,!pos_controls],W,Alpha[,!pos_controls]) # Detection
  is_perfect = (matC == 0) | (matA == 0) | (matA == 1)
  EL2 = sum((Z[,!pos_controls]*log( matC ))[!is_perfect],na.rm = FALSE) + 
    sum((Z[,!pos_controls]*log( matA ))[!is_perfect],na.rm = FALSE) + 
    sum(((1-Z[,!pos_controls])*log( 1 - matA ))[!is_perfect],na.rm = FALSE)
  
  return(list(W = W, X = X, Alpha = Alpha, Beta = Beta,
              fnr_character = t(fnr_character),
              p_nodrop = 1 - t((Y <= fp_tresh)*Z), 
              expected_state = t(Z), loglik = EL2,
              convergence = convergences, glm_pval = glm_pval))
}

Try the scone package in your browser

Any scripts or data that you put into this service are public.

scone documentation built on Nov. 8, 2020, 5:20 p.m.