Nothing
#' Plot of gene expression and meta data of single cell data in
#' bivariate hexagon cells.
#'
#' @param sce A \code{\link[SingleCellExperiment]{SingleCellExperiment}}
#' or \code{\link[Seurat]{Seurat-class}} object.
#' @param col A string referring to the name of one column in the meta data of
#' sce by which to colour the hexagons.
#' @param mod A string referring to the name of the modality used for plotting.
#' For RNA modality use "RNA". For other modalities use name of alternative
#' object for the \code{\link[SingleCellExperiment]{SingleCellExperiment}}
#' or the name of the assay for the \code{\link[Seurat]{Seurat-class}}
#' object.
#' @param type A string referring to the type of assay in the
#' \code{\link[SingleCellExperiment]{SingleCellExperiment}} object or the
#' data transformation in the \code{\link[Seurat]{Seurat-class}} object.
#' @param feature A string referring to the name of one feature.
#' @param action A string specifying how gene expression of observations in
#' binned hexagon cells are to be summarized. Possible actions are
#' \code{prop_0}, \code{mode}, \code{mean} and
#' \code{median} (see details).
#' @param colors A vector of strings specifying which colors to use for plotting
#' the different levels in the selected column of the meta data.
#' @param title A string containing the title of the plot.
#' @param xlab A string containing the title of the x axis.
#' @param ylab A string containing the title of the y axis.
#' @param expand_hull A numeric value determining the expansion of the line
#' marking different clusters.
#' @param ... Additional arguments passed on to
#' \code{\link{ggforce}{geom_mark_hull}}.
#'
#' @details This function plots any gene expresssion in the hexagon cell
#' representation calculated with \code{\link{make_hexbin}} as well as at the
#' same time representing outlines of clusters. The chosen gene
#' expression is summarized by one of four actions \code{prop_0},
#' \code{mode}, \code{mean} and \code{median}:
#'
#' \describe{
#' \item{\code{prop_0}}{Returns the proportion of observations in the bin
#' greater than 0. The associated meta data column needs to be numeric.}
#' \item{\code{mode}}{Returns the mode of the observations in the bin. The
#' associated meta data column needs to be numeric.}
#' \item{\code{mean}}{Returns the mean of the observations in the bin. The
#' associated meta data column needs to be numeric.}
#' \item{\code{median}}{Returns the median of the observations in the bin.
#' The associated meta data column needs to be numeric.}
#' }
#'
#' To access the data that has been integrated in the
#' \code{\link[Seurat]{Seurat-class}} object specifiy \code{mod="integrated"}.
#'
#' @return A \code{\link{ggplot2}{ggplot}} object.
#' @import Seurat
#' @import SingleCellExperiment
#' @import ggplot2
#' @importFrom dplyr as_tibble
#' @importFrom ggforce geom_mark_hull
#' @import concaveman
#' @export
#'
#' @examples
#' #' # For Seurat object
#' library(Seurat)
#' data("pbmc_small")
#' pbmc_small <- make_hexbin(pbmc_small, 10, dimension_reduction = "PCA")
#' plot_hexbin_feature_plus(pbmc_small, col="RNA_snn_res.1", type="counts",
#' feature="NRBP1",action="mean")
plot_hexbin_feature_plus <- function(sce,
col,
mod="RNA",
type,
feature,
action,
colors=NULL,
title=NULL,
xlab=NULL,
ylab=NULL,
expand_hull=3,
...) {
out <- .extract_hexbin(sce)
cID <- .extract_cID(sce)
if(is.null(out)){
stop("Compute hexbin representation before plotting.")
}
x_gene <- .prepare_data_feature(sce, mod, type, feature)
hh_gene <- .make_hexbin_function(x_gene, action, cID)
x <- .prepare_data_meta(sce, col)
hh <- .make_hexbin_function(x, 'majority', cID)
out <- as_tibble(out)
col_hh <-paste0(col, "_", "majority")
if(is.factor(x)){
func1 <- paste0("out$", col_hh, " <- factor(hh, levels=",
"levels(x))")
} else {
func1 <- paste0("out$", col_hh, " <- hh")
}
eval(parse(text=func1))
if(grepl("^[[:digit:]]", feature )){
feature <- paste0("G_", feature)
}
feature <- gsub("-", "_", feature)
col_hh_gene <- paste0(feature, "_", action)
func2 <- paste0("out$", col_hh_gene, " <- hh_gene")
eval(parse(text=func2))
.plot_hexbin_plus(out, colour_by = col_hh, fill_by_gene = col_hh_gene,
colors=colors, expand_hull=expand_hull, title=title,
xlab=xlab, ylab=ylab, ...)
}
.plot_hexbin_plus <- function(drhex, colour_by="Cluster_majority", fill_by_gene,
colors=NULL, expand_hull=3, legend=legend,
title=NULL, xlab=NULL, ylab=NULL, ...) {
if (any(!c("x", "y", colour_by) %in% colnames(drhex))) {
stop("The dataframe must contain columns named 'x', 'y' and col.")
}
if(is.null(title)) {
title <- colour_by
}
if(is.null(xlab)) {
xlab <- "x"
}
if(is.null(ylab)) {
ylab <- "y"
}
if(is.null(colors)){
ggplot(drhex, aes_string(x="x", y="y", fill=fill_by_gene)) +
geom_hex(stat = "identity") +
geom_mark_hull(aes_string(label = colour_by, col = colour_by),
show.legend = FALSE, expand = unit(expand_hull, "mm"),
fill=NA, size=2, ...) +
theme_classic() + scale_fill_viridis_c() +
ggtitle(title) + labs(x=xlab, y=ylab) +
theme(legend.title=element_blank())
} else {
ggplot(drhex, aes_string(x="x", y="y", fill=fill_by_gene)) +
geom_hex(stat = "identity") +
geom_mark_hull(aes_string(label = colour_by, col = colour_by),
show.legend = FALSE, expand = unit(expand_hull, "mm"),
fill=NA, size=2, ...) + theme_classic() + scale_fill_viridis_c() +
ggtitle(title) + labs(x=xlab, y=ylab) +
theme(legend.title=element_blank()) + scale_color_manual(values=colors)
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.