Nothing
#' Create a diffusion map from cell-level data
#'
#' Produce a diffusion map for the cells, based on the data in a SingleCellExperiment object.
#'
#' @param x For \code{calculateDiffusionMap}, a numeric matrix of log-expression values where rows are features and columns are cells.
#' Alternatively, a \linkS4class{SummarizedExperiment} or \linkS4class{SingleCellExperiment} containing such a matrix.
#'
#' For \code{runDiffusionMap}, a \linkS4class{SingleCellExperiment} object.
#' @param ncomponents Numeric scalar indicating the number of diffusion components to obtain.
#' @inheritParams runPCA
#' @param ... For the \code{calculateDiffusionMap} generic, additional arguments to pass to specific methods.
#' For the ANY method, additional arguments to pass to \code{\link[destiny]{DiffusionMap}}.
#' For the SummarizedExperiment and SingleCellExperiment methods, additional arguments to pass to the ANY method.
#'
#' For \code{runDiffusionMap}, additional arguments to pass to \code{calculateDiffusionMap}.
#'
#' @details
#' The function \code{\link[destiny]{DiffusionMap}} is used internally to compute the diffusion map.
#' The behaviour of \code{\link[destiny]{DiffusionMap}} seems to be non-deterministic, in a manner that is not responsive to any \code{\link{set.seed}} call.
#' The reason for this is unknown.
#'
#' @inheritSection calculatePCA Feature selection
#' @inheritSection calculatePCA Using reduced dimensions
#' @inheritSection calculatePCA Using alternative Experiments
#'
#' @return
#' For \code{calculateDiffusionMap}, a matrix is returned containing the diffusion map coordinates for each cell (row) and dimension (column).
#'
#' For \code{runDiffusionMap}, a modified \code{x} is returned that contains the diffusion map coordinates in \code{\link{reducedDim}(x, name)}.
#'
#' @author Aaron Lun, based on code by Davis McCarthy
#'
#' @name runDiffusionMap
#' @seealso
#' \code{\link[destiny]{DiffusionMap}}, to perform the underlying calculations.
#'
#' \code{\link[scater]{plotDiffusionMap}}, to quickly visualize the results.
#'
#' @references
#' Haghverdi L, Buettner F, Theis FJ (2015).
#' Diffusion maps for high-dimensional single-cell analysis of differentiation data.
#' \emph{Bioinformatics} 31(18), 2989-2998.
#'
#' @examples
#' example_sce <- mockSCE()
#' example_sce <- logNormCounts(example_sce)
#'
#' example_sce <- runDiffusionMap(example_sce)
#' reducedDimNames(example_sce)
#' head(reducedDim(example_sce))
NULL
.calculate_diffusion_map <- function(x, ncomponents = 2, ntop = 500,
subset_row = NULL, scale=FALSE, transposed=FALSE, ...)
{
if (!transposed) {
x <- .get_mat_for_reddim(x, subset_row=subset_row, ntop=ntop, scale=scale)
}
x <- as.matrix(x)
difmap_out <- destiny::DiffusionMap(x, ...)
difmap_out@eigenvectors[, seq_len(ncomponents), drop = FALSE]
}
#' @export
#' @rdname runDiffusionMap
setMethod("calculateDiffusionMap", "ANY", .calculate_diffusion_map)
#' @export
#' @rdname runDiffusionMap
#' @importFrom SummarizedExperiment assay
setMethod("calculateDiffusionMap", "SummarizedExperiment", function(x, ..., exprs_values="logcounts") {
.calculate_diffusion_map(assay(x, exprs_values), ...)
})
#' @export
#' @rdname runDiffusionMap
setMethod("calculateDiffusionMap", "SingleCellExperiment", function(x, ...,
exprs_values="logcounts", dimred=NULL, n_dimred=NULL)
{
mat <- .get_mat_from_sce(x, exprs_values=exprs_values, dimred=dimred, n_dimred=n_dimred)
.calculate_diffusion_map(mat, transposed=!is.null(dimred), ...)
})
#' @export
#' @rdname runDiffusionMap
#' @importFrom SingleCellExperiment reducedDim<-
runDiffusionMap <- function(x, ..., altexp=NULL, name="DiffusionMap") {
if (!is.null(altexp)) {
y <- altExp(x, altexp)
} else {
y <- x
}
reducedDim(x, name) <- calculateDiffusionMap(y, ...)
x
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.